Pitcher Plants: Sweet Temptation and the Slippery Slope

(Via: Wikimedia Commons)

Common Name: The Asian Pitcher Plant

A.K.A.: Genus Nepenthes

Vital Stats:

  • Over 130 species in the genus
  • The vast majority of species have extremely narrow ranges of only a single island or small island group, and are considered threatened
  • Most recently discovered (2007) was Nepenthes attenboroughii, named for Sir David Attenborough, who is fond of pitcher plants

Found: Mountainous regions of Southeast Asia, Oceania, and Madagascar

It Does What?!

Plants have evolved a variety of different ways to deal with growing in nutrient-poor soils. Some become parasitic, some develop close symbiotic relationships with bacteria or fungi, and some of them… well, some of them just start eating animals.

Lizard: makes a nice, light snack.
(Via: Wikimedia Commons)

One group of plants that went this route are the Asian pitcher plants (not to be confused with the not-closely-related New World pitcher plants, which tend to have tall, flute-like pitchers). These smallish, climbing plants use highly modified leaves to form what are essentially external stomachs, complete with the plant’s own digestive fluid. These pitchers, which vary in size from one species to the next, have extremely slick, waxy inner walls. When visitors come to eat the nectar produced on the lid (or “operculum”) of the trap, they lose their footing and fall into the liquid below.

That liquid is actually a pretty complex mixture; it’s divided into two phases, like oil and water. The upper portion is mostly rainwater, but has been laced with a compound that makes it more viscous, preventing winged insects from just flying away, as they could from pure water. The trap’s lid actually functions to prevent too much rainwater from getting inside and diluting the fluid too much. The lower portion of the liquid is a digestive acid capable of breaking down flesh into useable molecules (particularly nitrogen and phosphorous), much like our own stomach acid. Analogous to our intestines, the lower inside surface of the pitcher is covered with special glands that absorb suspended nutrients.

Most of what gets caught in pitcher plants is about what you’d expect- winged insects, spiders, beetles, small scorpions. But occasionally, some larger animals find their way in. Things that should have known better, like frogs, lizards, and even birds. Arguably, these plants are doing evolution a favour by taking out any bird dumb enough to fly into its own watery grave. And yes, to answer your next question- they can eat rats, but only a single species has been documented to do this. Nepenthes rajah, the largest of all pitcher plants, has pitchers which grow to a height of nearly half a metre (1.6’) and hold up to three and a half litres (1gal.) of fluid, most of which is digestive juice.

Interestingly, pitcher plants have formed symbiotic relationships with several of the same types of creatures that it otherwise preys on. Nepenthes lowii, for example, provides nectar to a tree shrew. Instead of falling in and being digested, the shrew treats the pitcher as its personal toilet, thereby providing the plant with most of the nutrition it requires.

In one end and out the other.
(Via: Wikimedia Commons)

Other species form alliances with groups of carpenter ants. In exchange for a steady supply of nectar and a place to live- in this case a hollow tendril- the ants basically act as the plant’s evil henchmen (apparently a specialty of ants). When prey that is too large to be easily digested falls into the trap, the ants remove it, rip it to shreds, and then throw the bits back in again.

How’s that for a brilliant piece of evolution? Not only did these plants grow an external stomach… they get ants to chew their food for them.

[Fun Fact: Some pitcher plants primarily survive by digesting leaves that fall from trees into their traps – the ‘vegetarians’ of the carnivorous plant world.]

Says Who?

  • Bonhomme et al. (2011) Journal of Tropical Ecology 27: 15-24
  • Clarke et al. (2009) Biology Letters 5: 632-635
  • Krol et al. (2012) Annals of Botany 109: 47-64
  • Robinson et al. (2009) Botanical Journal of the Linnean Society 159: 195-202
  • Wells et al. (2011) Journal of Tropical Ecology 27(4): 347-353
So big it makes them vaguely uncomfortable.
(Via: Wikimedia Commons)

The Stench of Death, brought to you by the Forests of Sumatra

(Via: The Parasitic Plant Connection)

Common Name: Giant Rafflesia

A.K.A.: Rafflesia arnoldii

Vital Stats:

  • One of about 28 species of Rafflesia, all parasites native to southeast Asia
  • Dioecious: produces male and female flowers on separate plants
  • Flowers last only a few days

Found: In the rainforests of Sumatra, Western Indonesia

It Does What?!

In my very first post here on Questionable Evolution, I discussed the Titan Arum, a.k.a. Corpse Plant, known for its pungent aroma and generally phallic appearance. This rare oddity is confined to the ever-shrinking rainforests of the western Indonesian island of Sumatra. Now meet its neighbour and fellow rotting flesh imitator, the Giant Rafflesia. Like the Titan Arum, this species is found only in the Sumatran rainforest and uses its odour to attract carrion flies for pollination. (With all the plants pretending to be dead animals on this island, it’s a wonder the flies ever actually find themselves any real carcasses.)

How big?  THAT big.
(With Mr. Troy Davis, Via: The Parasitic Plant Connection)

Rafflesia’s claim to fame in the plant world is that it produces the largest flower on Earth. A single bloom from Rafflesia arnoldii can reach a diameter of 1m (3.3’) and a mass of up to 7kg (15lbs.). In other words, one flower weighs about as much as your overweight cat. Impressive, sure, but what’s more interesting about this plant is that the flower’s the only part of it you’re ever likely to see.

Much like dodder, rafflesia is a holoparasite, depending entirely on a host plant (in this case, a vine of genus Tetrastigma, part of the grape family) for its water and nutrients. Unlike dodder, however, rafflesia doesn’t grow up and over its victim, eventually smothering it- no, this plant grows inside its host. Over the course of its evolution, the leaves, roots, and stems of rafflesia have been reduced to nothing but miniscule threads that grow, fungus-like, through the intercellular spaces of another plant, absorbing whatever they require. The giant flower arises directly from the roots or stem of the host vine, pushed out through the host’s tissues. Think chestbursters from Alien. Beyond the juvenile phase when a new seedling searches for its host, this is the only part of rafflesia that will ever see the light of day.

Flowering Time!!

Interestingly, botanists have found that rafflesia’s giant flowers evolved over a very short period of time (relatively speaking), with flower diameter increases of, on average, 20cm per million years. Blindingly fast, as plant evolution goes. The reason for this, they speculate, may have been a preference on the part of certain carrion flies to feed on larger animal carcasses. The range of flower sizes seen in different species of genus Rafflesia probably functions to attract different sets of fly species with varying tastes – some want wee little dead mice, some want dead rhinoceros, judging from the size of these things.

Plants: give ‘em a few million years, and they can mimic almost anything.

Says Who?

  • Barkman et al. (2008) Current Biology 18: 1508-1513
  • Beaman et al. (1988) American Journal of Botany 75(8): 1148-1162
  • Patifino et al. (2002) New Phytologist 154: 429-437

Thank a Horseshoe Crab

(Via: reefguide.org)

Common Name: Horseshoe Crab

A.K.A.: Family Limulidae

Vital Stats:

  • Four extant species of horseshoe crab in three genera (Limulus, Carcinoscorpius, and Tachypleus)
  • Females are larger than males, and can reach up to 60cm (24”) long in some species
  • Believed to live between 20 and 40 years

Found: Coastal waters of southeast Asia, Oceania, and eastern North America

It Does What?!

Like the platypus and the lungfish, horseshoe crabs are what biologists refer to as “living fossils,” meaning their basic form has gone essentially unchanged for many millions of years. In the case of horseshoe crabs, fossils as old as 445 million years have been found that are quite similar to the extant species of today.

Despite their common name, the Limulidae aren’t true crabs. They’re arthropods, like crabs, but are actually more closely related to spiders and scorpions. In fact, beneath that tough shell, they do look quite spider-like. If spiders had tails, that is.

Basically a tarantula in combat gear.
(Via: Wikimedia Commons)

Horseshoe crabs live in shallow coastal waters, feeding off worms and molluscs from the ocean floor. They are able to feed in near complete darkness at night due to a remarkable visual system. The creatures have three different types of eyes – compound, median, and rudimentary – located to both sides and to the front of their shell. What’s more, their compound eyes become a million times more sensitive to light at night than they are during the day. Since that’s roughly how much less light they have to work with at night, the crabs are able to see equally well at night and during the day.

Most people who have observed horseshoe crabs know them from their unusual breeding habits. Each spring and early summer, male crabs will search out a mate and attach themselves to the female’s shell using a special modified leg. Then, during the highest tides of the year, usually at night, the females crawl up onto shore by the hundreds, carrying their male cargo. Having picked a spot that’s moist, but not so low as to be washed away with the tide, they dig a nest into the sand and lay their eggs. The attached males get first dibs at fertilising the pre-laid eggs, but must share the task with numerous mate-less onlookers who rush in to get their shot at fatherhood as well (crabs are so uncouth). Since eggs number in the tens of thousands per female, many will probably be successful. Most of these thousands of eggs, however, will become food for migratory birds, who appreciate the extra protein snack on their long journeys. After a month or so, the uneaten eggs will hatch into larvae, which remain on the beach in groups for a couple of weeks before moulting into juvenile horseshoe crabs and finally moving into the water.

Horseshoe crabs, making more horseshoe crabs.
(Via: Wikimedia Commons)

Now you might be thinking, “That’s all well and good, but what can horseshoe crabs do for me?” Well, as it turns out, these creatures are some of the most prolific blood donors on Earth (whether they like it or not). Like our friend Mr. Spock, horseshoe crabs have copper-based blood, rather than the iron-based concoction favoured by humans. They are literally blue-blooded. And instead of white blood cells to fight off infection, they have amebocytes. These amebocytes are so valuable in detecting certain types of bacterial infections in humans that a quart of horseshoe crab blood is worth approximately $15,000 US. Crabs are caught, transported to a lab, and drained of about 30% of their blood before being released. The company behind this 50 million dollar per year industry states that only about 3% of the quarter million crabs die from the procedure annually, while other studies have found the number to be nearer to 15% (read more about it here). Knowing who’s right may become very important, as horseshoe crab populations are declining worldwide, additionally affecting the migratory birds that feed on their eggs. Either way, next time you survive an E. coli infection, thank a horseshoe crab.

No, no… we don’t mind. Really.
(Via: TYWKIWDBI)

[Fun Fact: Horseshoe crabs are thought to be the closest living relative of the extinct trilobite.]

[Also, here’s a cool video of (who else?) Sir David Attenborough explaining the mating habits of horseshoe crabs.]

Says Who?

Killing Me Softly, or, The Fatal Embrace of the Strangler Fig

(Via: Wikimedia Commons)

Common Name: Strangler Figs

A.K.A.: Ficus species

Vital Stats:

  • There are around 800 sp. of figs, over half of which are hemi-epiphytes, like stranglers
  • Around 10% of all vascular plants are epiphytes (about 25,000 species)
  • The trees which produce the figs we eat are terrestrial, and do not grow in other trees

Found: Tropical forests of Latin America, Southeast Asia, and Australia

It Does What?!

What does it take to squeeze the life out of a full-grown tree? A lot of time and some very long roots, apparently. Many parasites eventually bring about the untimely death of their hosts, but few do it as slowly and as insidiously as the strangler fig.

Stranglers begin life as a tiny seed that leaves the back end of a bird and happens to land on a tree branch high in the rainforest canopy. The seed germinates, and the young fig begins to grow as an aerial plant, or epiphyte, taking its moisture from the air and its nutrients from the leaf litter on its branch. Thousands of plant species, including most orchids, grow in this manner. But then an odd thing begins to happen. The seedling produces a single long root. Very long. From tens of metres up in the canopy, this root grows all the way down to the ground. Many young stranglers will die before their questing root reaches the earth, but for those that make it, a connection is formed with the soil through which water and nutrients can be extracted. From this point on the great, towering giant which holds this tiny little interloper is in mortal danger.

The strangler fig, playing “harmless epiphyte.”
(Screenshot from The Private Life of Plants, BBC)

A secure connection to the soil allows the fig to speed up its growth and to begin sending more and more roots earthward. Rather than dropping straight down, like the initial root, these later organs will twine around the bark of the host tree. At first, the roots are tiny, like mere vines crawling over the host trunk. Over time, however, they thicken, covering more and more of the trunk’s surface. Where they touch or overlap, the roots actually fuse together, forming a mesh over the surface of the bark. Up above, the stem of the strangler is growing as well. It rises through and above the host branches, soaking up the light and leaving the other tree shaded and starved for energy.

In fact, this is a war fought on two fronts. As the starving host tree struggles to gather light energy to send downward from the leaves, it is also increasingly unable to bring water up from its roots. This is because the tree’s trunk continues to expand even as the strangler’s grip grows tighter around it. These opposing forces effectively girdle the tree, crushing the vascular tissues that carry moisture from the soil. Eventually, the battle is lost and the tree dies. Fortunately for the fig, its major investments in root growth have paid off – the dead host tree does not fall, taking the strangler with it. Instead, it simply rots where it stands. Finally, many years after its arrival on the scene, the strangler fig has achieved independence. It is now a free-standing tree, completely hollow and supported by its interwoven lattice of aerial roots.

The first root finds the ground.
(Screenshot from The Private Life of Plants, BBC)

So what happens when more than one strangler fig seed lands on a particular tree? Something quite unique… the roots of the different individuals fuse and form an organism which is indistinguishable from a single tree, except by molecular testing. These are what biologists refer to as ‘genetic mosaics.’ What’s more, the individuals actually begin to act like a single tree. You see, figs typically have staggered flowering times, such that it is unlikely for numerous trees in a small area to be in bloom at the same time. This helps in keeping their wasp symbionts well nourished. Once trees fuse, however, they seem to become physiologically linked as well, with researchers reporting that they bloom as a single individual.

The most hurricane-proof tree ever.
(Screenshot from The Private Life of Plants, BBC)

[Fun Fact: Some strangler fig species have very high growth rates, and huge individuals have actually been found engulfing abandoned buildings in the tropics.]

Says Who?

  • Harrison (2006) Journal of Tropical Ecology 22(4): 477-480
  • Perry & Merschel (1987) Smithsonian 17: 72-79
  • Schmidt & Tracey (2006) Functional Plant Biology 33: 465-475
  • Thomson et al. (1991) Science 254: 1214-1216
Don’t meditate under strangler figs.
(Via: Flickr, by vincenzooli)

The Zombie Apocalypse: Already Underway

(Via: this site)

Common Name: The Zombie-Ant Fungus

A.K.A.: Ophiocordyceps unilateralis

Vital Stats:

  • Whole “graveyards” of 20-30 ants may be found within a single square metre
  • Telltale bitemarks on fossil plants suggest this fungus, or a related species, may have been in operation for the last 48 million years
  • Host species is the carpenter ant Camponotus leonardi

Found: Tropical forests throughout the world

It Does What?!

Despite all the advances of modern neuroscience, the fact is, human understanding of brain chemistry and its manipulation still has a long way to go. Much to the chagrin of those plotting world domination, we won’t be chemically controlling each other’s minds any time soon. How embarrassing then, that a mere fungus seems to have perfected this technique. Almost fifty million years ago. Scooped again, humanity.

It begins with an ant walking along the ground, deep in a tropical forest somewhere. This ant, Camponotus leonardi, lives high in the trees, but must occasionally come down to cross from one tree to another when there is a break in the canopy. As it walks, a minute fungal spore drifts down from above and lands in its back, unnoticed. The unseen spore springs into action, producing an enzyme which breaks down the ant’s exoskeleton just enough to allow a fungal hypha, like a tiny root, to enter. The host’s fate is now sealed.

This is your brain on ‘shrooms.
(Via: Flickr, by Alextkt)

While the ant climbs back up into the canopy and goes about its business, the fungus grows through its insides, breaking down and consuming the non-vital soft tissues as it goes, keeping the animal alive even as it is being eaten. Soon, the fungal tendrils reach the brain and begin to produce chemicals which affect the host’s behaviour in very specific ways. First, it will experience convulsions that cause it to fall out of its tree. These will continue periodically, preventing it from returning to its colony. Over a period of hours, the ant will then wander, erratically and aimlessly, over the ground and low-growing plants.

This is where the precision of the fungus’ mind control becomes truly impressive. At solar noon, when the sun is highest in the sky, the infected ant will abruptly climb the stem of a small plant and find a leaf pointing north by northwest at a height of 20-30cm above the ground. Yes, really. No one knows how this jaw-dropping specificity is accomplished, but it’s what the fungus wants, providing a temperature of 20-30 degrees Celcius (68-86F) and a relative humidity of around 95%. In cases where ants were experimentally moved to different heights or orientations, the fungus was unable to reproduce properly.

What the fungus wants, the fungus gets.
(Via: Wikimedia Commons)

Having found the perfect leaf, the zombified ant will go to its underside, find a major leaf vein, and just bite down on it as hard as it can. The fungus has already destroyed the muscles required to release this grip, and so there the ant stays, slowly dying over the course of the afternoon. Once its victim has been dispatched, the fungus grows toward the leaf, further anchoring itself to the plant. Around a week later, the parasite completes its horrifying circle of life by growing a fruiting body, similar to a mushroom, from the back of the dead ant’s head. This will open to release thousands of tiny spores, raining down over any potential hosts which may be walking below.

While the fungus is able to infect other, closely related, species of carpenter ant, it has less precise control over these hosts and isn’t always successful in getting the ant to do its bidding, suggesting that even minor variations in brain structure can stump it. So we’re probably safe from the fungal zombie apocalypse. At least for the time being…

Says Who?

  • Andersen et al. (2009) American Naturalist 174(3): 424-433
  • Hughes et al. (2011) Biology Letters 7: 67-70
  • Hughes et al. (2011) BMC Ecology 11: 13
  • Pontoppidan et al. (2009) PloS ONE 4(3): e4835

EVOLUTION TAG TEAM, Part 2: Sex & the Synconium

The second in an ongoing series of biology’s greatest duos. (Check out Parts One and Three)

(Via: Mastering Horticulture)

Common Name (Plants): Fig Trees

  • A.K.A.: Genus Ficus

Common Name (Wasps): Fig Wasps

  • A.K.A.: Family Agaonidae

Vital Stats:

  • Approximately 800 species of figs
  • Most are trees, but some are shrubs and vines
  • Approximately 640 species (20 genera) of fig wasps
  • All are obligate pollinators of figs

Found: Throughout the Tropics

It Does What?!

Snacked on any Fig Newtons lately? Tasty, right? Like the ad says, “A cookie is just a cookie, but a Newton is fruit and cake.”  …And wasps.

They must have run out of space on the package for that last part.

Before you toss out your favourite teatime treat, I should point out that without those wasps, the figs themselves wouldn’t exist. [Personally, I love Fig Newtons and will eat them regardless of any insects present.] This plant-insect pairing actually represents one of the most stable symbioses out there, with evidence suggesting it has existed for over 65 million years.

Now with 10% more Wings
(Via: Wikipedia)

While it’s not entirely clear how this arrangement evolved in the first place, fig trees produce a unique structure called a synconium, in which the flowers are actually inside the part we think of as the fruit. This synconium, which can contain up to 7000 flowers, depending on the fig species, has a tiny hole at the tip called an ostiole. In order for the flowers to be pollinated and the fruit to grow, a female wasp must squeeze through that hole, often losing her wings and antennae in the process, and distribute pollen that she carries in a sac on her abdomen. As she does so, she also uses her ovipositor to reach down into some of the female flowers and lay her eggs in their ovaries, where a gall is formed and the larvae can develop. Then she dies and ends up in a cookie. The End.

But hold on, let’s remove humans from the equation for a moment. She dies, but her eggs hatch into little moth larvae which use the growing fig for nutrition. Once they’re old enough, the young wasps mate with one another inside the fig (another nice mental image for snacktime), and the females gather pollen from the male flowers and store it inside their abdominal pollen baskets (yes, that’s actually what they’re called). The wingless male wasps have a simple, three step life: 1) mate with females, 2) chew a hole through the fig so they can leave, 3) die. That’s pretty much it for them. They may escape the nursery with the females, but they’ll die shortly thereafter, regardless. In fact, even the females have a pretty rough deal; from the time they’re old enough to mate, they have about forty-eight hours to get their eggs fertilized, gather pollen, find a new synconium, distribute the pollen, and lay their eggs. Two days, and their life is over. No pursuit of happiness for the fig wasp, I’m afraid.

“What does it all mean?”
(Via: BugGuide.net)

As with any long-standing mutualism, there are, of course, parasites ready and waiting to take advantage of it. These parasites are wasps which are able to enter the synconium and lay their eggs, but which do not pollinate the fig. Although their eggs will crowd out those of the fig wasps, decreasing the number of fig wasp larvae born, they are kept in check by the fact that any unpollinated synconium will be aborted by the tree and drop to the ground, taking the parasite eggs with it. The nonpollinating wasps are therefore kept from being a serious threat to the tree’s pollinators.

So there you have it, another of evolution’s great matches. The wasps get an edible nursery, the trees get pollinated, and we get tasty fruits with suspicious crunchy bits that probably aren’t dead wasp bodies, so just try not to think about it too much…

Seeds, or wasp eggs? You be the judge!
(Via: This Site)

[Fun Fact: The symbiosis between fig species and their corresponding wasp partners is so specific (often 1:1), that the shape of the ostiole actually matches the shape of the head of the wasp species which will pollinate it.]

[For those who would like to read about figs and fig wasps in much greater detail (such as how this works when the male and female flowers are in different figs), check out this excellent site for all you could ever want to know.]

Says Who?

  • Compton et al. (2010) Biology Letters 6: 838-842
  • Cook et al. (2004) Journal of Evolutionary Biology 17: 238-246
  • Kjellberg et al. (2001)Proceedings of the Royal Society of London, Biology 268: 1113-1121
  • Proffit et al. (2009) Entomologia Experimentalis et Applicata 131: 46-57
  • Zhang et al. (2009) Naturwissenschaften 96: 543-549

Smells like death, looks like… an Amorphophallus?

Amorphophallus titanum

Common Name(s): Corpse Flower, Titan Arum

A.K.A.: Amorphophallus titanum

Found: Sumatra, Western Indonesia

It Does What?!

Looking like something from an Enterprise away mission, this is a plant you won’t soon forget. For those who imagine that biologists don’t have a sense of humour, the scientific name of the Corpse Flower is Amorphophallus titanum, which is Latin for ‘giant misshapen penis.’ And it’s not a bad description; the plant produces a… well, vaguely penis-shaped bloom that grows up to three feet tall and, as if we needed more to snicker about, produces pulses of heat which move from the base to the tip, reaching temperatures of over 36 degrees Celcius (97 Fahrenheit).

It happens to every Amorphophallus at some point…
(Via: plantae.ca)

It’s actually a bit of a misnomer to call this phallic monstrosity a flower- it’s really an inflorescence, a structure on which smaller, individual flowers grow. In the case of Amorphophallus, that cone in the middle is called a spadix (think calla lilies or jack-in-the-pulpit… same plant family), and holds upwards of 900 tiny flowers, of which about half are male and half are female.

Naturally, all those tiny little flowers need to get pollinated in order to create more giant-penis-plants, and the pollinators of choice for Amorphophallus are carrion beetles and blowflies. How to attract the attention of your favoured pollinators in a busy Sumatran rainforest? You give them what they want – the stench of rotting flesh. Those pulses of heat I mentioned before actually serve a purpose; they work like a convection oven, throwing off a foul odour which rises above the canopy as the warmer air rises. This allows the scent signal to be carried over greater distances. And how bad does it smell? Researchers of the plant note that a principal chemical component of that funk is known to also be the main source of the delicate bouquet that is rotting human flesh. Mmm… For another overly-vivid mental picture, be sure to check out a close relative of the Corpse Flower, Helicodiceros muscivorus, a.k.a. Dead Horse Arum.

Says Who?

  • Barthlott et al. (2009) Plant Biology 11: 499-505.
  • Shirasu et al. (2010) Biosci. Biotechnol. Biochem. 74(12): 2550-2554.