Cuckoos: Outsourcing Childcare, Hogging the Bed

(Via:)
(Via: Batsby)

Common Name: Parasitic Cuckoos

A.K.A.: Subfamily Cuculinae (Family Cuculidae)

Vital Stats:

  • Range in length from 15-63cm (6-25”) and weigh between 17g (0.6oz.) and 630g (1.4lbs.)
  • The majority of cuckoos are not parasites, but around 60sp. are (about 56 in the Old World, and 3 in the New World)
  • Babies of brood parasites are initially coloured so as to resemble the young of the host species

Found: The cuckoo family is present throughout the temperate and tropical world, with the exceptions of southwest South America and regions of North Africa and the Middle East. Parasitic cuckoos occupy a subset of this range, principally in the Old World.

Cuckoo Map

It Does What?!

Parenting is tough… less sleep, less free time, all those all those hungry mouths to feed. What’s a busy mother to do? You know you need to perpetuate the species, but who has the time? Impressively, cuckoos have come up with the same answer that many humans have: outsourcing! Involuntary outsourcing, in this case.

One of these things is not like the others.(Via: Timothy H. Parker)
One of these things is not like the others.
(Via: Timothy H. Parker)

Once a female cuckoo has mated and is ready to lay the eggs, rather than build a nest and slog her way through childcare, she waits for another female with freshly laid eggs to take off for some food and just lays her egg there, spreading her clutch across several nests. In theory, when the duped female returns, she’ll just settle in and care for the new egg along with her own. Cuckoo eggs have a shorter incubation period than that of their host, so the foreign egg usually hatches first, at which point the baby cuckoo just gives the other eggs (or chicks, if the timing didn’t quite work out) a good shove, and enjoys having both a nest and a doting mother to itself. The cuckoo chick will tend to grow faster than its host species, so it keeps its adoptive parent busy with constant begging for food, having eliminated the competition.

But this wouldn’t be a fun evolutionary arms race if the host species just took it on the chin. Birds plagued by cuckoo eggs have worked out several ways to try to cope with the problem. First off, and not surprisingly, they’ve developed a burning hatred of cuckoos. Adult cuckoos seen in the area of the hosts’ nests will immediately be mobbed and run off by a group of angry mothers. The cuckoos, however, have learned to use this to their advantage by having the male of a pair tease and lure the angry mob away while the female lays her eggs in peace. Advantage: cuckoos.

And this, kids, is how you deal with those annoying younger siblings.(Via: M. Bán, PLoS ONE)
And this, kids, is how you deal with those annoying younger siblings.
(By: M. Bán, PLoS ONE)

A second strategy used by the parasitised birds is to learn to recognise foreign eggs and pre-emptively toss them out of the nest. Cuckoos responded to this in two ways. First, they slowly evolved eggs to match those of their host bird in colour and size (or, in the case of covered nests, very dark eggs which aren’t easily seen at all). Bird species with higher levels of egg rejection just end up with cuckoo eggs which look more and more similar to their own. Second, if a host does reject the foreign egg, the cuckoo who laid it will sometimes come and just destroy the entire nest, killing anything left inside it in an act of motherly vengeance. Advantage: cuckoos.

A third strategy, developed by the Superb Fairy Wren (not to be confused with the equally floridly named Splendid Fairy Wren) is a bit more clever. As soon as the host mother lays her eggs, she begins to sing to them in a very specific pattern. Now, in this case, the cuckoo egg will hatch around the same time as her own eggs, but was deposited there several days later than her own. This means that her own chicks have been sitting there, unborn, learning her song for a longer period of time than the cuckoo has. Once the eggs are hatched, only her own chicks will be able to properly replicate her calls. Can’t sing the song? No food for you. And if, prior to starving to death, the parasite chick does manage to push her chicks out of the nest, the mother will fail to hear the proper response at all and know to simply abandon the nest entirely. Advantage: Fairy Wren. Superb indeed.

Shrikes: don't try to outsmart a bird that kills mammals for sport.(Via: Arkive.org)
Shrikes… don’t try to outsmart a bird that kills mammals for sport.
(Via: Arkive.org)

There is at least one known case of a former host species throwing off the yoke of cuckoo parasitism entirely. The red-backed shrike, aside from being particularly murderously aggressive toward adult cuckoos (and many other things), became very good at identifying cuckoo eggs, very quickly. So quickly, in fact, that researchers believe the cuckoos simply didn’t have time to adapt. In laboratory experiments, the shrikes correctly identified and rejected 93.3% of all cuckoo eggs placed in their nests. Pretty good pattern recognition for a brain the size of a pea. While cuckoo-red shrike parasitism has been known historically for some time, it hasn’t been seen in nature for the last 30-40 years.

Shrikes for the win.

Fun Facts:

  • Even typically non-parasitic cuckoos will sometimes lay their eggs in the nests of their own or other species, but will still help to feed the chicks (parental guilt, perhaps?).
  • The eggshells of parasitic cuckoos are unusually thick, helping prevent them from cracking as their mother drops them from above into the host nest.
  • Striped cuckoos, not content to just shove their adoptive siblings out of the nest, actually peck them to death with their beaks.
  • A few birds deal with homicidal cuckoo chicks by building steep-sided nests, making it difficult for any chick to be pushed out (and raising them as one big, happy family, I guess).

Says Who?

  • Colombelli-Négrel et al. (2012) Current Biology 22: 2155-2160
  • Feeney et al. (2012) Animal Behaviour 84: 3-12
  • Lovaszi & Moskat (2004) Behaviour 141(2): 245-262
  • Spottiswoode & Stevens (2012) American Naturalist 179(5): 633-648
  • Wang & Kimball (2012) Journal of Ornithology 153: 825-831