What’s in a Name?

Part One: Common vs. Scientific Names

img_3146-staghornsumac

When I was a kid growing up on a farm in southwestern Ontario, sumac seemed to be everywhere, with its long, spindly stems, big, spreading compound leaves, and fuzzy red berries. I always found the plant beautiful, and had heard that First Nations people used the berries in a refreshing drink that tastes like lemonade (which is true… here’s a simple recipe). But often, we kids were warned by adults that this was “poison sumac,” not to be touched because it would give us itchy, burning rashes, like poison ivy did. In fact, plenty of people would cut down any nascent stands to prevent this menace from spreading. We were taught to fear the stuff.

 

Toxicodendron_vernix#1978a#2_400
THIS is the stuff you need to look out for. Via The Digital Atlas of the Virginia Flora

It was many years later before I learned that the red-berried sumacs I grew up with were not only harmless, but were also not closely related to the poisonous plant being referred to, which, as it turns out, has white berries and quite different leaves. Scientifically speaking, our innocent shrub is Rhus typhina, the staghorn sumac, while the rash-inducing plant is called Toxicodendron vernix. Not even in the same genus. Cautious parents were simply being confused by the similarity of the common names.

 

This story illustrates one of the ironies of common names for plants (and animals). Though they’re the way nearly everyone thinks of and discusses species, they’re without a doubt the most likely to confuse. Unlike scientific (Latin) names, which each describe a single species and are, for the most part, unchanging, a single common name can describe more than one species, can fall in and out of use over time, and may only be used locally. Also important to note is that Latin names are based on the taxonomy, or relatedness, of the species, while common names are usually based on either appearance, usage, or history.

 

This isn’t to say that common names aren’t valuable. Because common names describe what a plant looks like or how it is used, they can convey pertinent information. The common names of plants are also sometimes an important link to the culture that originally discovered and used the species, as in North America, where native plants all have names in the local languages of First Nations people. It seems to me, although I have no hard evidence to back it up, that these original names are now more often being used to form the Latin name of newly described species, giving a nod to the people who named it first, or from whose territory it came.

 

One high profile case of this in the animal world is Tiktaalik roseae, an extinct creature which is thought to be a transitional form (“missing link”) between fish and tetrapods. The fossil was discovered on Ellesmere Island in the Canadian territory of Nunavut, and the local Inuktitut word “tiktaalik”, which refers to a type of fish, was chosen to honour its origin.

 

But back to plants… Unlike staghorn sumac and poison sumac, which are at least in the same family of plants (albeit not closely related within that family), sometimes very distinct species of plants can end up with the same common name through various quirks of history. Take black pepper and bell or chili peppers. Black pepper comes from the genus Piper, and is native to India, while hot and sweet peppers are part of the genus Capsicum. Botanically, the two are quite distantly related. So why do they have the same name? Black pepper, which bore the name first, has been in use since ancient times and was once very highly valued. The confusion came about, it would seem, when Columbus visited the New World and, finding a fruit which could be dried, crushed, and added to food to give it a sharp spiciness, referred to it as “pepper” as well.

Sa-pepper
A black peppercorn. Easy to confuse with a chili pepper, I guess? Via: Wikimedia Commons

 

Another interesting, historically-based case is that of corn and maize. In English-speaking North America, corn refers to a single plant, Zea mays. In Britain and some other parts of the Commonwealth, however, “corn” is used to indicate whatever grain is primarily eaten in a given locale. Thus, Zea mays was referred to as “Indian corn” because it was consumed by native North Americans. Over time, this got shortened to just “corn”, and became synonymous with only one species. Outside of Canada and the United States, the plant is referred to as maize, which is based on the original indigenous word for the plant. In fact, in scientific circles, the plant tends to be called maize even here in North America, to be more exact and avoid confusion.

 

1024px-Spanish_moss_at_the_Mcbryde_Garden_in_hawaii
Not Spanish, not a moss. Via: Wikimedia Commons

And finally, for complete misinformation caused by a common name, you can’t beat Spanish moss. That wonderful gothic stuff you see draped over trees in the American South? That is neither Spanish, nor a moss. It is Tillandsia usneoides, a member of the Bromeliaceae, or pineapple family, and is native only to the New World.

 

And that wraps up my very brief roundup of confusing common names and why they should be approached with caution. In part two, I’ll discuss Latin names, how they work, and why they aren’t always stable and unchanging, either.

 

There are SO many more interesting and baffling common names out there. If you know of a good one, let me know in the comments!

 

*Header image via the University of Guelph Arboretum

Cuckoos: Outsourcing Childcare, Hogging the Bed

(Via:)
(Via: Batsby)

Common Name: Parasitic Cuckoos

A.K.A.: Subfamily Cuculinae (Family Cuculidae)

Vital Stats:

  • Range in length from 15-63cm (6-25”) and weigh between 17g (0.6oz.) and 630g (1.4lbs.)
  • The majority of cuckoos are not parasites, but around 60sp. are (about 56 in the Old World, and 3 in the New World)
  • Babies of brood parasites are initially coloured so as to resemble the young of the host species

Found: The cuckoo family is present throughout the temperate and tropical world, with the exceptions of southwest South America and regions of North Africa and the Middle East. Parasitic cuckoos occupy a subset of this range, principally in the Old World.

Cuckoo Map

It Does What?!

Parenting is tough… less sleep, less free time, all those all those hungry mouths to feed. What’s a busy mother to do? You know you need to perpetuate the species, but who has the time? Impressively, cuckoos have come up with the same answer that many humans have: outsourcing! Involuntary outsourcing, in this case.

One of these things is not like the others.(Via: Timothy H. Parker)
One of these things is not like the others.
(Via: Timothy H. Parker)

Once a female cuckoo has mated and is ready to lay the eggs, rather than build a nest and slog her way through childcare, she waits for another female with freshly laid eggs to take off for some food and just lays her egg there, spreading her clutch across several nests. In theory, when the duped female returns, she’ll just settle in and care for the new egg along with her own. Cuckoo eggs have a shorter incubation period than that of their host, so the foreign egg usually hatches first, at which point the baby cuckoo just gives the other eggs (or chicks, if the timing didn’t quite work out) a good shove, and enjoys having both a nest and a doting mother to itself. The cuckoo chick will tend to grow faster than its host species, so it keeps its adoptive parent busy with constant begging for food, having eliminated the competition.

But this wouldn’t be a fun evolutionary arms race if the host species just took it on the chin. Birds plagued by cuckoo eggs have worked out several ways to try to cope with the problem. First off, and not surprisingly, they’ve developed a burning hatred of cuckoos. Adult cuckoos seen in the area of the hosts’ nests will immediately be mobbed and run off by a group of angry mothers. The cuckoos, however, have learned to use this to their advantage by having the male of a pair tease and lure the angry mob away while the female lays her eggs in peace. Advantage: cuckoos.

And this, kids, is how you deal with those annoying younger siblings.(Via: M. Bán, PLoS ONE)
And this, kids, is how you deal with those annoying younger siblings.
(By: M. Bán, PLoS ONE)

A second strategy used by the parasitised birds is to learn to recognise foreign eggs and pre-emptively toss them out of the nest. Cuckoos responded to this in two ways. First, they slowly evolved eggs to match those of their host bird in colour and size (or, in the case of covered nests, very dark eggs which aren’t easily seen at all). Bird species with higher levels of egg rejection just end up with cuckoo eggs which look more and more similar to their own. Second, if a host does reject the foreign egg, the cuckoo who laid it will sometimes come and just destroy the entire nest, killing anything left inside it in an act of motherly vengeance. Advantage: cuckoos.

A third strategy, developed by the Superb Fairy Wren (not to be confused with the equally floridly named Splendid Fairy Wren) is a bit more clever. As soon as the host mother lays her eggs, she begins to sing to them in a very specific pattern. Now, in this case, the cuckoo egg will hatch around the same time as her own eggs, but was deposited there several days later than her own. This means that her own chicks have been sitting there, unborn, learning her song for a longer period of time than the cuckoo has. Once the eggs are hatched, only her own chicks will be able to properly replicate her calls. Can’t sing the song? No food for you. And if, prior to starving to death, the parasite chick does manage to push her chicks out of the nest, the mother will fail to hear the proper response at all and know to simply abandon the nest entirely. Advantage: Fairy Wren. Superb indeed.

Shrikes: don't try to outsmart a bird that kills mammals for sport.(Via: Arkive.org)
Shrikes… don’t try to outsmart a bird that kills mammals for sport.
(Via: Arkive.org)

There is at least one known case of a former host species throwing off the yoke of cuckoo parasitism entirely. The red-backed shrike, aside from being particularly murderously aggressive toward adult cuckoos (and many other things), became very good at identifying cuckoo eggs, very quickly. So quickly, in fact, that researchers believe the cuckoos simply didn’t have time to adapt. In laboratory experiments, the shrikes correctly identified and rejected 93.3% of all cuckoo eggs placed in their nests. Pretty good pattern recognition for a brain the size of a pea. While cuckoo-red shrike parasitism has been known historically for some time, it hasn’t been seen in nature for the last 30-40 years.

Shrikes for the win.

Fun Facts:

  • Even typically non-parasitic cuckoos will sometimes lay their eggs in the nests of their own or other species, but will still help to feed the chicks (parental guilt, perhaps?).
  • The eggshells of parasitic cuckoos are unusually thick, helping prevent them from cracking as their mother drops them from above into the host nest.
  • Striped cuckoos, not content to just shove their adoptive siblings out of the nest, actually peck them to death with their beaks.
  • A few birds deal with homicidal cuckoo chicks by building steep-sided nests, making it difficult for any chick to be pushed out (and raising them as one big, happy family, I guess).

Says Who?

  • Colombelli-Négrel et al. (2012) Current Biology 22: 2155-2160
  • Feeney et al. (2012) Animal Behaviour 84: 3-12
  • Lovaszi & Moskat (2004) Behaviour 141(2): 245-262
  • Spottiswoode & Stevens (2012) American Naturalist 179(5): 633-648
  • Wang & Kimball (2012) Journal of Ornithology 153: 825-831

Axolotls in Never Never Land

(Via: National Geographic)
(Via: National Geographic)

Common Name: Axolotls

A.K.A.: Ambystoma mexicanum

Vital Stats:

  • Grow to a length of 15-45cm (6-18”)
  • Can live up to 15 years
  • Have no eyelids
  • Usually black or brown in colour, but mutation occasionally produces pink skin
  • Eat insects, worms, and small aquatic animals
  • Commonly kept as pets and, in parts of Mexico, food

Found: In the Xochimilco lake system, near Mexico City

Axolotl Map

It Does What?!

Axolotls are the Lost Boys of the amphibian world… they never grow up. These bizarre little salamanders are found only in a single lake system near Mexico City and, if the city’s pollution gets much worse, may soon not be found there, either.

First, a little background on salamanders in general. These amphibious, lizard-like creatures begin life in a larval stage. While adult salamanders have lungs and spend much of their time out of the water, larvae have only gills and are completely aquatic. They commonly undergo a metamorphosis in which the gills are lost and the body changes shape, thinning out and losing its ‘tadpole with legs’ appearance. Many salamanders have displayed the ability to occasionally forego metamorphosis, remaining in their larval stage for life. This phenomenon of looking like a juvenile even during adulthood is called “neoteny.”

caption(via:)
The “fully cooked” version.
(Via: Wikimedia Commons)

What makes axolotls special is that they’re what’s called “obligate neotenes,” meaning they simply never go through metamorphosis… every adult axolotl looks like the larval stage of other salamander species. At some point in their evolution, it became either more beneficial or downright necessary for them to remain aquatic. Biologists have speculated that this is because their smaller larval form requires less food, and because the lakes where they live are low in iodine, an element required for their transformation.

Interestingly, while axolotls almost never go through metamorphosis in the wild, in a certain percentage of them, the genetic instructions for doing so seem to still be intact. If you have a larval axolotl and you want an adult form, you can either give it an injection of iodine, or, for the more deranged among you, gradually deprive it of its pool of water. Either method of forced metamorphosis has a high mortality rate and, at best, causes a hugely decreased lifespan, but it does show they haven’t entirely lost that capacity.

caption(From:)
The future of multi-tasking.
(From: McCusker & Gardiner (2011) Gerontology 57: 565)

An eternally youthful appearance isn’t even the axolotls’ only superpower. The creatures also possess a Wolverine-like ability to heal themselves. Not only can they – and other salamanders – regrow lost limbs, they can actually regenerate parts of vital organs, including sections of the brain, spinal cord, and, in one study, up to 50% of the heart ventricle. Axolotls can also receive organ transplants from other individuals without rejection or problems with lack of function in the new tissue. Obviously, these traits have made them of intense interest to a certain species which doesn’t regrow limbs, hearts, or spinal cords. Researchers hope that by studying the genetic and biochemical basis of these heightened healing abilities, they can create their own army of X-Men help amputees and victims of spinal cord injuries. But this research is still in its early stages. In the meantime, it would probably be in our best interests not to drive them to extinction.

Fun Facts:

  • Axolotls have tiny vestigial teeth, which in other salamanders only grow during metamorphosis.
  • Sometimes, an axolotl with a heavily damaged limb will both repair the old limb and regrow a new one, ending up with an extra leg (see above).
  • Forced metamorphosis can be only half-successful, producing adult forms with juvenile characteristics, such as a thickened neck.
  • Obligate neotenes like axolotls end up with a lot of extra “junk” DNA [biologists: via duplications of the pseudogenes created when their life history changed], which has actually resulted in their having larger cells than other salamanders.

    caption(Via:)
    It’s hard not to look crazy when you have no eyelids.
    (Via: Aquadisiac News)

Says Who?

  • Chernoff (1996) International Journal of Developmental Biology 40: 823-831
  • Martin & Gordon (1995) Journal of Evolutionary Biology 8: 339-354
  • Neff et al. (1996) International Journal of Developmental Biology 40: 719-725
  • Rosenkilde & Ussing (1996) International Journal of Developmental Biology 40: 665-673

Living in Filth and Looking Up at the Stars

(Via:)
(Via: Wikimedia Commons)

Common Name: Dung Beetles

A.K.A.: Subfamily Scarabaeinae

Vital Stats:

  • Many subsist entirely on faeces, while others also consume fungi and decaying plant matter
  • Found in extremely diverse habitats, on all inhabited continents
  • Grow up to 6cm (2.4”) long, and can live for up to three years

Found: Across the temperate and tropical regions of the world

Dung Beetle Map

It Does What?!

Dung beetles… if you believe in reincarnation, these are why you try to stay on the straight and narrow. Otherwise, you might end up coming back as a creature whose life quite literally revolves around excrement. Dung beetles owe their entire existence to the fact that larger animals have inefficient digestive systems, consuming manure for its remaining nutrients and even laying their eggs inside it as food for their future young. Gross, yes, but once you get past the “ick” factor, it’s a pretty practical system.

Dung beetles come in three main varieties: rollers, tunnellers, and dwellers. Rollers, which are the type most people are familiar with, roll faeces into small balls which they roll away with them to consume and bury elsewhere. Tunnellers dig under the dung, burying it on site as an underground food source. Dwellers, the slackers of the dung beetle world, don’t bother with burying their treasure, preferring to simply live in it where it falls. I’ll focus on the rollers from here on in, as they’re the most bizarrely specialised of the bunch.

Dung beetles find their warm, fresh meals either through their excellent sense of smell or, in the case of some species, by simply riding around on their chosen food provider until the right time comes. Studies have shown that the beetles prefer omnivore or herbivore droppings to those of carnivores, perhaps for the more easily-digestible plant matter. One particularly intrepid group of researchers even determined that human faeces are favoured above those of most other large mammals. Good job, guys. Your funding agency must be proud.

It's a hot commodity... so to speak.(Via: Wikimedia Commons)
It’s a hot commodity… so to speak.
(Via: Wikimedia Commons)

Rollers immediately set to work on a new pile of droppings by shaping a dense little ball of up to ten times their weight (about TimBit sized, for you Canadians out there. Mmm!). Before rolling the ball away to be eaten/buried for later, the beetle will climb up on it and do a sort of dance, rotating around its top. Researchers also observed the beetles doing this dance if their rolling path was disturbed, or if another beetle stopped them to try to steal their ball.

So why the dance? As you might guess, it’s a means of getting their bearings, but what’s really fascinating is how they’re doing it. Dung beetles always roll their balls in a straight line directly away from its origin, probably as a means of reducing competition from other nearby beetles as quickly as possible. And they do this despite facing the ground as they roll the ball with their hind legs. During the day, this was fairly obviously accomplished by positioning themselves according to the direction of the sun, using their dorsal vision. However, they can also do it on a clear, moonless night. How?

Using a planetarium and a series of experiments which, hilariously, involved fitting the dung beetles with little cardboard hats to block their overhead vision, a South African researcher has determined that the beetles are actually using the light from the Milky Way to navigate. This is the only known instance of animals using an entire galaxy to orient themselves. Birds and seals have been known to use stars for positioning, but never the Milky Way itself. This from a tiny creature that cleans up piles of poop for a living… there’s probably an inspiring metaphor here somewhere.

Goes great with coffee!(Via: Wikimedia Commons)
Goes great with coffee!
(Via: Wikimedia Commons)

In the “But what does it do for me?” department, dung beetles are actually immensely useful to humans. Beyond restoring important soil nutrients, in areas of intense cattle-grazing, the beetles cart off and bury literally tonnes of manure that would otherwise host dangerous parasites and disease-carrying flies. Australia has intentionally introduced African dung beetles for this express purpose. Results have been much better than certain other introductions there.

The value of dung beetles has apparently been recognised for a very long time. Ever heard of the sacred scarab beetles of ancient Egypt? Yep… they’re dung beetles. One and the same. The beetles represented transformation and were linked with the god of the rising sun, who was believed to remake the sun and roll it across the sky each day, like the beetle with its ball. Something to think about next time you’re watching a beautiful sunrise.

[Fun Fact: Dung beetles in the African savanna use their dung balls as thermal refuges, periodically climbing up on them to moisten and cool their feet, which can increase in temperature by as much as ten degrees as they travel over the hot ground.]

Says Who?

  • Baird et al. (2012) PLoS ONE 7(1): e30211
  • Chamorro-Florescano (2011) Evolutionary Ecology 25: 277-289
  • Dacke et al. (2013) Current Biology 23: in press
  • Smolka et al. (2012) Current Biology 22(20): R863-R864
  • Whipple & Hoback (2012) Environmental Entomology 41(2): 238-244

Necessity is the Mother of Invention, or, How to Eat Like a Shrike

(By: Arthur Morris, Via: Livebooks Blog)

Common Name: The Shrike

A.K.A.: Family Laniidae

Vital Stats:

  • Family consists of three genera and around 30 species
  • Shrikes range in size from 17cm (6.5”) up to 50cm (20”) long
  • Feathers may be black and white, cream, grey, or brown

Found: Various species found in North America, Southern Africa, and Eurasia

It Does What?!

Sometimes a creature aspires to a spot a little higher on the food chain, but doesn’t quite have all the equipment to get there. Behold the shrike, the bird that wishes it were a raptor. Like birds of prey, shrikes have strong, hooked beaks, sharp eyes, and an appetite for meat, but they’re missing a couple of important features. First, and most important… no talons. Shrikes can’t grab a victim and tear it into pieces like a hawk or falcon could. And second, no crop (a sort of internal storage pouch), so they can’t eat a large quantity of meat in a single sitting.

Not to be deterred by their anatomical shortcomings, these inventive go-getters have come up with a single solution to both problems. Two birds with one stone, if you will. After dispatching their prey with a quick beak to the back of the neck, shrikes will carry the carcass to a nearby shrub and actually impale it on a short branch or thorn. Aside from looking incredibly badass, this serves to anchor the body in one place, allowing the shrike to use its beak to rip the meat into pieces. What’s more, the bird can just leave its leftovers hanging there for later, like the meat locker at a butcher shop. [Wondering what that looks like? Here’s a video, set to appropriately ominous music.]

And now they’re learning to use human technology…
(Via: Nature Saskatchewan)

What kind of prey are we talking about here? Anything from small insects right up to mice, frogs, lizards, and other birds. There’s even a record of one killing and impaling a good-sized bat. Impressively, shrikes have also hit on the value of ageing their food – one species hunts the toxic lubber grasshopper of the southern United States. The dead grasshoppers are then left hanging for several days to let the poison degrade before being eaten. Clever birds.

Shrikes are monogamous and share in parenting duties; when the female is sitting on eggs, it’s the male’s job to go out and kill something nutritious for two. Of course, this makes selecting a good hunter an important task for females during mate selection. When a single male wants to advertise his skills, he makes a conspicuous display of his biggest, most impressive kills for any prospective ladies. Once he’s gotten one’s attention, he performs a mating dance that mimics the action of impaling prey on branches and then feeds her from his assortment of carcasses. (Be sure to include this point next time you’re explaining ‘the birds and the bees’ to someone.)

The owner of this lizard is probably off getting lucky.
(Via: Wikimedia Commons)

I guess when you have only one major skill, you want to make the most of it, because aside from eating and attracting mates, shrikes also use their impaling trick for communication. Bonded pairs are territorial and will defend their terrain from others of their species. In a sort of macabre message to would-be trespassers, the couple will mount their kills around the borders of their land, perhaps in an effort to show others what could become of them if push came to shove. (Did I mention these things actually have a comic book monster named for them? Eat your heart out, Batman.) Unfortunately for them, researchers note that this action often resulted in the prey being snatched by opportunistic passers-by and having to be replaced. It’s so hard to look murderous when everybody keeps stealing your victims…

[Fun Fact: Shrikes with young chicks will often eat only the head of their prey, saving the bodies for the kids. ‘Cause that’s just good parenting.]

Says Who?

  • Keynan & Yosef (2010) Behavioural Processes 85: 47-51
  • Sarkozi & Brooks (2003) Southwestern Naturalist 48(2): 301-303
  • Smith (1973) Behaviour 44(1/2): 113-141
  • Yosef & Pinshow (2005) Behavioural Processes 69: 363-367
You’re next.
(Via: Tough Little Birds)

Thank a Horseshoe Crab

(Via: reefguide.org)

Common Name: Horseshoe Crab

A.K.A.: Family Limulidae

Vital Stats:

  • Four extant species of horseshoe crab in three genera (Limulus, Carcinoscorpius, and Tachypleus)
  • Females are larger than males, and can reach up to 60cm (24”) long in some species
  • Believed to live between 20 and 40 years

Found: Coastal waters of southeast Asia, Oceania, and eastern North America

It Does What?!

Like the platypus and the lungfish, horseshoe crabs are what biologists refer to as “living fossils,” meaning their basic form has gone essentially unchanged for many millions of years. In the case of horseshoe crabs, fossils as old as 445 million years have been found that are quite similar to the extant species of today.

Despite their common name, the Limulidae aren’t true crabs. They’re arthropods, like crabs, but are actually more closely related to spiders and scorpions. In fact, beneath that tough shell, they do look quite spider-like. If spiders had tails, that is.

Basically a tarantula in combat gear.
(Via: Wikimedia Commons)

Horseshoe crabs live in shallow coastal waters, feeding off worms and molluscs from the ocean floor. They are able to feed in near complete darkness at night due to a remarkable visual system. The creatures have three different types of eyes – compound, median, and rudimentary – located to both sides and to the front of their shell. What’s more, their compound eyes become a million times more sensitive to light at night than they are during the day. Since that’s roughly how much less light they have to work with at night, the crabs are able to see equally well at night and during the day.

Most people who have observed horseshoe crabs know them from their unusual breeding habits. Each spring and early summer, male crabs will search out a mate and attach themselves to the female’s shell using a special modified leg. Then, during the highest tides of the year, usually at night, the females crawl up onto shore by the hundreds, carrying their male cargo. Having picked a spot that’s moist, but not so low as to be washed away with the tide, they dig a nest into the sand and lay their eggs. The attached males get first dibs at fertilising the pre-laid eggs, but must share the task with numerous mate-less onlookers who rush in to get their shot at fatherhood as well (crabs are so uncouth). Since eggs number in the tens of thousands per female, many will probably be successful. Most of these thousands of eggs, however, will become food for migratory birds, who appreciate the extra protein snack on their long journeys. After a month or so, the uneaten eggs will hatch into larvae, which remain on the beach in groups for a couple of weeks before moulting into juvenile horseshoe crabs and finally moving into the water.

Horseshoe crabs, making more horseshoe crabs.
(Via: Wikimedia Commons)

Now you might be thinking, “That’s all well and good, but what can horseshoe crabs do for me?” Well, as it turns out, these creatures are some of the most prolific blood donors on Earth (whether they like it or not). Like our friend Mr. Spock, horseshoe crabs have copper-based blood, rather than the iron-based concoction favoured by humans. They are literally blue-blooded. And instead of white blood cells to fight off infection, they have amebocytes. These amebocytes are so valuable in detecting certain types of bacterial infections in humans that a quart of horseshoe crab blood is worth approximately $15,000 US. Crabs are caught, transported to a lab, and drained of about 30% of their blood before being released. The company behind this 50 million dollar per year industry states that only about 3% of the quarter million crabs die from the procedure annually, while other studies have found the number to be nearer to 15% (read more about it here). Knowing who’s right may become very important, as horseshoe crab populations are declining worldwide, additionally affecting the migratory birds that feed on their eggs. Either way, next time you survive an E. coli infection, thank a horseshoe crab.

No, no… we don’t mind. Really.
(Via: TYWKIWDBI)

[Fun Fact: Horseshoe crabs are thought to be the closest living relative of the extinct trilobite.]

[Also, here’s a cool video of (who else?) Sir David Attenborough explaining the mating habits of horseshoe crabs.]

Says Who?

Ergot: Bringing the Crazy Since 800 A.D.

(Via: The University of Illinois Extension Collection)

Common Name: Ergot, Ergot of Rye

A.K.A.: Claviceps purpurea (and other Claviceps species)

Vital Stats:

  • Around 30-40 species in genus Claviceps, all parasites of various types of grasses
  • Parasitizes rye, barley, and wheat crops in temperate regions
  • Problematic in Africa due to its parasitism of sorghum and millet

Found: Throughout temperate and tropical regions, though historically most problematic in Europe, Africa, and North America

It Does What?!

Disrupts human history and generally scares the hell out of people, to put it mildly. But before we get into that, let’s start with what this stuff is. An ergot infection begins when a microscopic fungal spore lands on the open floret of a grass plant. In northern agricultural areas, rye and, to a lesser extent, barley are particularly susceptible to these spores. Once on the receptive flower, the spore behaves as though it were a pollen grain, growing down the style until it reaches the ovary. At this point, it destroys the ovary and links into the adjoining vascular tissue, where it can parasitize the plant for nutrients.

With plenty of food on tap, the fungus grows into the space that the grain would have otherwise filled. Early on, it forms into a soft, white mass that causes a sugary liquid to drip from the flower. This liquid is filled with spores and is spread to other plants by hungry insects as they fly from flower to flower. Later in the growing season, around the time neighbouring non-parasitized grains are ripening, the fungal mass dries and hardens into a sclerotium (a sort of fungal seed body) that looks a bit like wild rice, and drops to the ground. This sclerotium will sit dormant on the ground until spring, when moisture will cause it to sprout small mushrooms, which produce spores for the new season.

Hint: Wild rice doesn’t do this when you get it wet.
(Via: mycotopia.net)

Still reading? Good. Here’s the interesting part. Let’s say you’re a farmer in the Middles Ages, and the infected plants in question are in your field. Before the ergot sclerotia drop to the ground, they get harvested with the rest of the crop, and end up getting made into bread for you and your family. Well, it turns out those sclerotia are full of a toxic alkaloid called ergotamine, and after eating enough loaves of bread to build the compound up in your systems, you and your nearest and dearest have contracted ergotism. Fed some of that rye to your cows? Now they’ve got it, too!

Ergotism delivers a one-two punch of physical and psychological symptoms. Physically, the alkaloid constricts blood vessels, leading to an intense burning sensation in the arms and legs which can eventually cause gangrene and loss of the entire limb. Some sufferers also develop a persistent ringing in the ears. That’s before the seizures and untimely death set in. Psychologically… well, it makes you crazy. As in, hallucinations and irrational behaviour, which lead many victims to be ostracised by their communities. Ergotism is speculated to have been the cause of the Dancing Mania (not as fun as it sounds) that hit Europe in the Middle Ages. Huge numbers of people were struck by an uncontrollable urge to dance – violently and while screaming – until they collapsed from exhaustion. Did I mention that this stuff is where LSD came from? The drug was originally synthesised from ergotamine, handily delivering all the craziness with none of the gangrenous limb loss.

Nope, nothing suspicious-looking here.
(Via: Wikimedia Commons)

The cure for all this horror? Well, if you got to it early enough, simply not eating any more contaminated grain would cause symptoms to slowly abate. Unfortunately for medieval peasants, who ate a lot of rye and suffered most of history’s outbreaks, the cause of the disease was completely unknown. Weird-looking sclerotia were so common that they were thought to be a natural feature of rye. That old standby, “It’s the wrath of God” actually seemed supported, since sufferers who left the affected area on pilgrimages immediately began to show improvement (hence another term for the disease, ‘Holy Fire’). Sadly, it took the better part of a millennium before someone worked out what was really going on, and major outbreaks occurred right up to the 19th century. Even in the 21st century, minor outbreaks have occurred in developing countries, such as the case in Ethiopia in 2001, caused by infected barley.

Speaking of disrupting human history, some researchers have speculated that an ergotism outbreak caused the strange behaviour that resulted in the Salem witch trials of the late 17th century. Others have disputed this claim, noting, among other points, that ergotism was known and recognisable by this point in history. We may never know for sure.

[For other historical events in which ergotism may have played a role, check out the first reference below.]

[Fun Fact: Due to its action as a vasoconstrictor, ergotamine is now used, in purified form, to treat migraines and post-natal bleeding.]

Says Who?

Death from Below! (The Purse-Web Spider)

(Via: Wikimedia Commons)

Common Name: Purse-Web Spiders

A.K.A.: Family Atypidae

Vital Stats:

  • The family contains three genera; Atypus, Calommata, and Sphodros
  • Females reach up to 30mm (1.2”) in length
  • Fangs can measure up to half the spider’s body length
  • Prey includes crickets, beetles, millipedes, ants, wasps, and other spiders
  • Web tubes measure up to half a metre (20”) from top to bottom

Found: Africa, temperate regions of North America, Europe, and Asia

It Does What?!

Imagine you’re a beetle, peacefully strolling along the forest floor, minding your own business, when suddenly, two enormous black spikes drive up out of the earth and impale you through the abdomen. As everything fades to black, your last beetle-ly thought is, “What the hell was that?!

You have just become a tasty lunch for the purse-web spider.

So how does this work? Well, unlike most of the spiders we’re familiar with – those with small, pincer-like mouths that sit in webs all day – purse-webs are a type of primitive spider called a mygalomorph. In this group, the fangs are like a pair of large (relative to the spider) tusks that only move up and down; they don’t pinch, and this feature lends itself to some rather creative hunting methods.

Rather than constructing a flat, aerial web designed to have something fall into it, the purse-web spider spins what is essentially a silken tube-sock. The ‘foot’ of this sock lies along a slight depression in the ground, while the upper part lies vertically against a tree or rock (or, in some species, angles downward into the earth). The spider will then place bits of bark and lichen onto both parts of the web as camouflage. Over time, moss will actually begin to grow on the web, completing the disguise. All the spider needs to do now is wait, suspended from the ceiling of her underground lair, for some unwitting creature to walk over it. When this happens, she rushes to the source of the disturbance and spears her prey from below with her fangs before they realise what hit them (like this).

Invisible by spider standards, anyway.
(Via: Wikimedia Commons)

The spider will be vulnerable to larger predators if she ventures out into the open, so she simply cuts a slit in the web, drags her impaled prey inside, and seals up the hole again. Having sucked out their delicious insides, she then drops the dead husks out of the top of her sock like so much household garbage. In fact, researchers determined the diet of the purse-web spider by noting the various exoskeletons hanging from the outside of the web, having gotten caught on their way down. Apparently, all the dead bodies seemingly stuck to the side of a nearby tree aren’t much of a deterrent to other passersby.

So, since these spiders never leave their burrows, and kill anything that approaches, mating must be tricky, right? Right. The male is attracted to the female’s web by means of pheromones, and ventures out to find it. Once he locates the web, he must be very careful, tapping at the outside of the tube in a way that indicates he isn’t prey. Ultimately, though, whether he’s prey or not will be up to her. If the female inside isn’t yet mature or is already pregnant, she won’t hesitate to eat him when he attempts to enter the burrow. Researchers experimenting with placing male spiders in or near the webs of unreceptive females noted, essentially, that they run like hell as soon as they figure out what’s what. Research is amusing sometimes.

A male purse-web spider on what will be either the best or worst day of his life.
(Via: Florida Backyard Spiders)

But in the happy instances where the female is willing to mate, the male enters safely, and in fact continues to live with her for several months of domestic bliss before he dies naturally. And then she eats him anyway. Spiders are not sentimental creatures. Her eggs will take almost a year to hatch, and the young will stay with her for nearly another year after that, before striking out in the world to spin their own tube-sock of death.

Says Who?

  • Beatty (1986) Journal of Arachnology 14(1): 130-132
  • Coyle & Shear (1981) Journal of Arachnology 9: 317-326
  • Piper (2007) Extraordinary Animals: an encyclopedia of curious and unusual animals. Greenwood Press, Westport CT.
  • Schwendinger (1990) Zoologica Scripta 19(3): 353-366

The Bloodhounds of the Plant World (Cuscuta sp.)

(Via: Marine Science)

Common Names: Dodder, Goldthread, Witch’s Shoelaces

A.K.A.: Genus Cuscuta

Vital Stats:

  • Approximately 200 species
  • Part of the Convolvulaceae family, which includes morning glory and sweet potato
  • Only 15-20 species are considered to be problematic crop parasites

Found: Throughout temperate and tropical parts of the world

It Does What?!

We’ve discussed a few parasites on this blog already, and they’ve all been pretty typical of what comes to mind when we think of parasitic organisms- tiny, malignant little creatures that invade the host’s body, steal its resources, and, in some cases, eat its tongue. But when we think ‘parasite,’ we don’t usually think ‘plant.’ As it turns out, there are an estimated 4500 parasitic species just among the angiosperms, or flowering plants. Among them, dodders have to be one of the strangest.

Found nearly throughout the world, these vine-like plants begin as tiny seeds that germinate late in the spring or summer, after their potential host plants have established themselves. The young seedling has no functional roots and little or no ability to photosynthesize, so initially, it must make do with what little nutrition was stored in its seed. This isn’t much, so the plant has only a few days to a week to reach a host before it dies. To better its chances, the dodder stem swings around in a helicopter-like fashion as it grows, trying to hit something useful.

Much more impressive is the plant’s other method of finding suitable hosts- a sense of smell. Recent research has found that, uniquely among plants, the dodder can actually detect odours given off by surrounding plants and grow towards them. In experiments, the seedlings were found to grow toward the scent of a tomato, even if no actual plant was present. What’s more, they are capable of showing a preference among hosts. Presented with both tomato plants, which make excellent hosts, and wheat plants, which make poor hosts, seedlings were found to grow toward the aroma of tomatoes much more often. Like herbivores, they can use scent to forage amongst a variety of species for their preferred prey.

Smells like lunch… even to other plants.
(Via: Wikimedia Commons)

Once a host plant is found, the dodder begins to twine itself around the stem and to form haustoria (singular: haustorium). These are like tiny tap roots that pierce the host’s stem and actually push between the living cells inside until they reach the vascular system. Once there, the haustoria enter both the xylem (where water and minerals move upward from the roots) and the phloem (where sugars from photosynthesis move around the plant). From these two sources, the dodder receives all its nutrients and water, freeing it from any need for a root system, or even a connection to the soil. And since it doesn’t need to capture solar energy, all green pigment fades from the parasite, and it turns a distinctive yellow or red colour. Leaves aren’t necessary either, which is why the plant is essentially nothing but stem, explaining its common name of “witch’s shoelaces.”

Not what you want to see when you head out to weed the garden.
(Via: County of Los Angeles)

Once it gets comfortable on its new host, the dodder can grow at a rate of several centimetres a day (impressive for a plant) and produce stems of a kilometre or more in length, quickly overrunning an area. It can also attach itself to additional hosts – hundreds, in fact – which is problematic, because at this point it becomes the plant equivalent of a dirty shared needle. Since the vasculature of the hosts is connected, any virus present in one host can be freely transferred to any other. This ability, coupled with its affinity for potatoes, tomatoes, tobacco, and several other important crops, makes dodder a major nuisance for many farmers. And since it’s able to regenerate from just a single, tiny haustorium left in a host plant, it’s really hard to get rid of. There’s always a flip side, though; in some ecosystems, dodder can actually maintain biodiversity by preferentially parasitising the more competitive plants, allowing the weaker ones to survive. It seems dodder may also be the Robin Hood of the plant world.

[Extra Credit: Here’s a video showing how dodder can completely take over a group of nettle plants, complete with ominous soundtrack. Narrated by the fantastic Sir David Attenborough.]

Says Who?

  • Costea (2007-2012) Digital Atlas of Cuscuta (Convolvulaceae). Wilfred Laurier University Herbarium, Ontario, Canada
  • Furuhashi et al. (2011) Journal of Plant Interactions 6(4): 207-219
  • Hosford (1967) Botanical Review 33(4): 387-406
  • Pennisi (2006) Science 313: 1867
  • Runyon et al. (2006) Science 313:1964-1967

    Cuscuta: 1, Acacia: 0
    (Via: Wikimedia Commons)