The Life and Times of the Last Earthpig

(Via:)
(Via: National Geographic)

Common Name: The Aardvark

A.K.A.: Orycteropus afer, Family Orycteropodidae

Vital Stats:

  • Also referred to as the “antbear” or “earthpig”
  • Common name derives from Afrikaans words meaning ‘earth’ and ‘pig’
  • Habitats include savannas, grasslands, and woodlands
  • Weighs 40-65kg (88-140lbs.) and can grow up to 2.2m (7’3”) long
  • Can live up to 24 years in captivity
  • Nocturnal, feeding only during the evening and at night

Found: Sub-Saharan Africa

Aardvark Map

It Does What?!

Like the platypus and several other creatures we’ve looked at, aardvarks are considered “living fossils,” organisms which have changed little from the way they looked millions of years ago (around 20 million, in this case).

Aardvarks don’t look much like most mammals of today, other than a passing similarity to the South American anteater, to which it isn’t closely related. In fact, aardvarks aren’t particularly closely related to anything. Not only are they the sole species in their genus, but they have their own family and order as well. This is because everything else that used to inhabit these ranks has since become extinct. At one time, there were at least 14 different species in the aardvark family, spread over parts of Africa, Europe, and Asia; but today, there’s just our friend the earthpig. Strangely, among the aardvark’s closest living relatives are manatees and elephants (all part of the motley superorder, Afrotheria), which suggests just what distant cousins they must be.

Okay, so aside from having outlived its family members, what’s so interesting about these things? Well, one look at them will tell you they must have evolved to fit some unusual lifestyle. Aardvarks are myrmecophagous, meaning they specialise in eating ants and termites, and nearly everything about that odd little body is geared to this task. First, finding their insect food means digging into large anthills and termite mounds, so aardvarks have become prodigious diggers, tunnelling at rates of up to two feet in 15 seconds with their heavily clawed feet. They use this skill in creating their underground burrows as well, excavating tunnels up to 13m (43’) long and even changing their home’s layout from time to time. Because, you know, you get tired of the same old thing…

caption(Via:)
Clark the Aardvark, fresh from finishing his new ensuite bathroom with walk-in closet.
(By: Frans Lanting, Via: Posterlouge)

Moving further up, the aardvark’s narrow, elongated head and long, snake-like tongue are perfect for dipping into the minute passages made by ants and termites. They even have a special sticky saliva that adheres to ants at a touch. In a single night of feeding sessions lasting from five seconds to two minutes per stop, an aardvark can attack 200 hills, consuming as many as 50,000 insects. The ants and termites try to fight back, of course, but the aardvark has thick, tough skin and can seal its nostrils shut, making bites and stings ineffective.

There’s just one feature of the aardvark that doesn’t make a lot of sense for its insect-eating lifestyle, and that’s a set of back teeth. (In fact, they’re are born with front teeth as well, but lose them at maturity.) No other myrmecophage on Earth has a functional set of teeth… you just don’t need ‘em to eat ants. So why do aardvarks have them? A little thing called the Aardvark Cucumber!

In a bonus piece of evolutionary weirdness, aardvarks supplement their diet with a single type of fruit, a cucumber which has now become entirely reliant on hungry aardvarks for its continued existence. The plant flowers above ground – as plants do – but then pushes itself into the earth as it sets fruit, resulting in a subterranean fruit. These cucumbers are dug up by aardvarks and eaten as a source of moisture, while the seeds go undigested and are conveniently deposited elsewhere with a ready source of fertiliser for germination. Without the aardvark, seed dispersal would be impossible, and new plants would be unable to obtain enough water and nutrients to survive.

So there you have the life of the lonely aardvark… enemy of the ants, saviour of the cucumber, brother to no one.

caption(Via:)
“I laugh in the face of probable extinction… and nail clippers.”
(Via: Zooborns)

[Fun Fact: If pursued into its burrow, an aardvark will protect itself by sealing off the tunnel behind itself and digging further into the ground in the other direction.]

[Also… On their front feet, aardvarks have lost their equivalent to our thumb, retaining only four digits.]

Says Who?

  • Endo et al. (2003) Annals of Anatomy 185: 367-372
  • Lehmann et al. (2004) Journal of African Earth Sciences 40: 201-217
  • Lehmann (2008) Fossil Record 11(2): 67-81
  • Taylor et al. (2002) Journal of Arid Environments 50: 135-152
  • Taylor & Skinner (2003) Journal of the Zoological Society of London 261: 291-297

Hidden Kingdom, Part Two

(Via:)
(Via: Livingroutes.org)

Common Name: Leafcutter Ants

A.K.A.: Genera Atta and Acromyrmex of Tribe Attini

Vital Stats:

  • Fungi grown by leafcutter ants come from the family Agaricaceae
  • Ant species can maintain their association with a specific fungal cultivar for millennia
  • Neither the ants nor the fungal cultivars can survive outside of the symbiosis
  • Some ant species are capable of completely defoliating a small tree in under a day

Found: Humid forests of Central and South America

Leafcutter Map

It Does What?!

Last week, we looked at leafcutter colonies, their various castes, and the impressively long lives of ant sperm. But obviously, leafcutter ants are known principally for one thing- cutting leaves. This they do on a grand scale, forming lines of thousands upon thousands of ants, dutifully toting chucks of foliage back to their colony. Why? To fertilize their fungus, of course! Much as we like to think of agriculture as one of the crowning achievements of mankind, the fact is, ants came up with it much earlier than we did. About 50 million years earlier, actually. (But they haven’t figured out how to deep-fry anything yet, so there’s that, I guess.)

caption (Via: Wikimedia.org)
The fungus is hungry.
(Via: Wikimedia.org)

When a young queen leaves her original colony to found a new one, she carries in her mouth a small piece of fungus to use as a starter culture (think yogurt or sourdough bread) for the colony’s gardens. Initially, she will care for this culture alone, but once the first generation of workers is born, they will take over the task from that point on. Since fungi don’t photosynthesize, they’re perfectly happy in a pitch-black underground garden, but they still need nutrients with which to grow, and dead vegetation is their food of choice. As the larger worker castes return with leaf (and flower) fragments up to three times their own mass, the minima gardeners clean away any outside fungal spores and chew the vegetation into smaller and smaller pieces. They then mix the shredded leaves with fungus and add the mixture to the garden. And, just for an extra fertiliser kick, they mix in their own faeces. Waste not, want not, right?

With all the workers coming and going, and so much foreign vegetation entering the colony, infections of the garden by competing fungal spores are inevitable, despite the ants’ best efforts. One such invader is the fungus Escovopsis, a parasite of other fungi, which can decimate a colony’s food supply and, in the case of young and vulnerable colonies, sometimes cause them to fail entirely.

caption (Via:)
I use the term “garden” loosely…
(Via: Marietta College)

But the ants have a secret weapon: bacteria. These adaptive little farmers actually carry around a ready supply of antimicrobial compounds right on their bodies. The bacterium in question, Pseudonocardia, grows directly on the ants’ exoskeletons and, researchers suspect, is nourished by a substance excreted through the ant’s glands. In return, Pseudonocardia produces a compound that the farmers can spread on invading fungus, killing it without damaging their food source. Symbioses within symbioses… and these are just the ones we know about.

Meanwhile, outside the colony, another fascinating parasite threatens the workers. Known as phorid flies, or ant-decapitating flies, you can probably guess why these things are a problem. Female phorid flies land on the backs of the larger worker ants as they travel to and from their leaf harvesting sites, laying eggs on the worker’s thorax. Once the eggs hatch, the larvae work their way into the ant’s head and start to eat the tissue surrounding the brain, eventually moving on to the brain itself (causing aimless wandering behaviour similar to that caused by the zombie ant fungus). Finally, the young parasites secrete an enzyme which causes the ant’s head to fall off completely, leaving them a convenient vessel in which to finish their development into adults.

caption(Via:)
They’ve evolved everything but the ability to look behind them.
(Via: Dayvectors.net)

Not to be outsmarted (by anything, apparently), leafcutter ants instituted a policy of defensive piggyback rides. Workers on the foraging path carry tiny minima ants on their backs as they travel. The minimae are too small to be useful hosts for the phorid fly, and so are able to fearlessly attack the flies as they approach, keeping the foragers safe. And not to lose an opportunity for increased efficiency, the little passenger will also begin cleaning the leaf fragment as the larger worker carries it home.

So there you have it. Leafcutter ants form colonies of millions, assign specialised tasks to different classes of citizens, grow their own crops, excel at problem-solving, and know how to use antibiotics. Next to humans, they form the largest and most complex societies on Earth. Forget robots and computers, people- if anything’s going to gain sentience and overthrow humanity, my money’s on the ants.

[Fun Fact: They compost, too. At least one leafcutter species maintains ‘outdoor’ waste heaps of discarded leaves and fungus. Special disposal workers (often old or unhealthy ants) turn the heap regularly to speed up decomposition.]

Says Who?

  • www.antweb.org
  • Marietta College Leafcutter Ant Page

  • Dijkstra & Boomsma (2006) Insectes Sociaux 53: 136-140
  • Evison & Hughes (2011) Naturwissenschaften 98: 643-649
  • Evison & Ratnieks (2007) Ecological Entomology 32: 451-454
  • Holman et al. (2011) Molecular Ecology 20: 5092-5102
  • Mueller et al. (2008) Evolution 62(11): 2894-2912

Pitcher Plants: Sweet Temptation and the Slippery Slope

(Via: Wikimedia Commons)

Common Name: The Asian Pitcher Plant

A.K.A.: Genus Nepenthes

Vital Stats:

  • Over 130 species in the genus
  • The vast majority of species have extremely narrow ranges of only a single island or small island group, and are considered threatened
  • Most recently discovered (2007) was Nepenthes attenboroughii, named for Sir David Attenborough, who is fond of pitcher plants

Found: Mountainous regions of Southeast Asia, Oceania, and Madagascar

It Does What?!

Plants have evolved a variety of different ways to deal with growing in nutrient-poor soils. Some become parasitic, some develop close symbiotic relationships with bacteria or fungi, and some of them… well, some of them just start eating animals.

Lizard: makes a nice, light snack.
(Via: Wikimedia Commons)

One group of plants that went this route are the Asian pitcher plants (not to be confused with the not-closely-related New World pitcher plants, which tend to have tall, flute-like pitchers). These smallish, climbing plants use highly modified leaves to form what are essentially external stomachs, complete with the plant’s own digestive fluid. These pitchers, which vary in size from one species to the next, have extremely slick, waxy inner walls. When visitors come to eat the nectar produced on the lid (or “operculum”) of the trap, they lose their footing and fall into the liquid below.

That liquid is actually a pretty complex mixture; it’s divided into two phases, like oil and water. The upper portion is mostly rainwater, but has been laced with a compound that makes it more viscous, preventing winged insects from just flying away, as they could from pure water. The trap’s lid actually functions to prevent too much rainwater from getting inside and diluting the fluid too much. The lower portion of the liquid is a digestive acid capable of breaking down flesh into useable molecules (particularly nitrogen and phosphorous), much like our own stomach acid. Analogous to our intestines, the lower inside surface of the pitcher is covered with special glands that absorb suspended nutrients.

Most of what gets caught in pitcher plants is about what you’d expect- winged insects, spiders, beetles, small scorpions. But occasionally, some larger animals find their way in. Things that should have known better, like frogs, lizards, and even birds. Arguably, these plants are doing evolution a favour by taking out any bird dumb enough to fly into its own watery grave. And yes, to answer your next question- they can eat rats, but only a single species has been documented to do this. Nepenthes rajah, the largest of all pitcher plants, has pitchers which grow to a height of nearly half a metre (1.6’) and hold up to three and a half litres (1gal.) of fluid, most of which is digestive juice.

Interestingly, pitcher plants have formed symbiotic relationships with several of the same types of creatures that it otherwise preys on. Nepenthes lowii, for example, provides nectar to a tree shrew. Instead of falling in and being digested, the shrew treats the pitcher as its personal toilet, thereby providing the plant with most of the nutrition it requires.

In one end and out the other.
(Via: Wikimedia Commons)

Other species form alliances with groups of carpenter ants. In exchange for a steady supply of nectar and a place to live- in this case a hollow tendril- the ants basically act as the plant’s evil henchmen (apparently a specialty of ants). When prey that is too large to be easily digested falls into the trap, the ants remove it, rip it to shreds, and then throw the bits back in again.

How’s that for a brilliant piece of evolution? Not only did these plants grow an external stomach… they get ants to chew their food for them.

[Fun Fact: Some pitcher plants primarily survive by digesting leaves that fall from trees into their traps – the ‘vegetarians’ of the carnivorous plant world.]

Says Who?

  • Bonhomme et al. (2011) Journal of Tropical Ecology 27: 15-24
  • Clarke et al. (2009) Biology Letters 5: 632-635
  • Krol et al. (2012) Annals of Botany 109: 47-64
  • Robinson et al. (2009) Botanical Journal of the Linnean Society 159: 195-202
  • Wells et al. (2011) Journal of Tropical Ecology 27(4): 347-353
So big it makes them vaguely uncomfortable.
(Via: Wikimedia Commons)

EVOLUTION TAG TEAM, Part 3: Coral Polyps & the Garden Within

The third in an ongoing series of biology’s greatest duos. (Check out Parts One and Two)

(Via: Wikimedia Commons)

Common Name: Coral Polyps

  • A.K.A.: Class Anthozoa, Subclass Hexacorallia

Common Name: Coral Algae

  • A.K.A.: Genus Symbiodinium

Vital Stats:

  • Polyps grow to a length of only a few centimetres, depending on species
  • Coral can grow outward at a rate of up to 10cm (4”) per year
  • The Great Barrier Reef stretches over 2000km (1243 mi) and can be seen from space

Found: Various coastal areas; largest reefs surrounding Australia, Oceania, and the Caribbean

It Does What?!

If you’ve ever been told that coral reefs are alive, then looked at one and felt a bit sceptical that this chuck of colourful rock could be a living thing… well, good for you, because you’re actually mostly right. The vast majority of the volume of a coral reef is, in fact, nonliving inorganic mineral (calcium carbonate, specifically). The amazing thing about coral isn’t so much what it’s made of, but what’s going on on the surface. You see, that oddly-shaped, porous rock is actually a communal exoskeleton produced and excreted over time by hundreds of thousands of polyps living in the tiny, cup-shaped depressions on the surface.

“Breaded, with a side of chips, please.”
(Via: Wikimedia Commons)

Looking like tiny jellyfish (and belonging to the same phylum), the polyps hide in the stony sanctuary they’ve made, letting only their tentacles project. These tentacles are tipped with stinging cells which can inject a powerful venom into any prey foolish enough to swim within reach. This prey can range in size from microscopic plankton to small fish. That’s right, coral eats fish. Watch where you stick your toes.

So where does the ‘duo’ part come in? Despite their ability to snatch passing sea creatures and eat them, coral polyps actually get only a small part of their caloric intake this way. Impressively, these guys managed to find a diet that requires even less effort than just reaching out and grabbing stuff. Who needs movement when you can just photosynthesize, like plants do? The polyps have developed a symbiosis with a type of single-celled alga (called zooxanthellae) that allows them to do just that.

The algae start out as free-living cells drifting through the water. They are eaten by the coral polyp, but instead of being digested, they are able to enter the cells lining its digestive tract. Since the polyps are transparent to begin with, all they have to do is expose their bodies to sunlight in order to allow the algae to produce sugars by photosynthesis (this is why reefs form in relatively shallow waters). The majority of the sugars made by the symbiont are then absorbed by the polyp.

And what do the algae get out of this arrangement? A couple of things. First, they get a safe place to live, and won’t get eaten by something that can digest them. Second, they get nutrients, in the form of carbon dioxide and nitrogen compounds, both natural waste products of the polyp’s metabolism. Still, sometimes as much as 30% of the cells in a polyp are algal cells, and this puts a stain on the host’s physiology.

“I’ve just got a lot going on right now.”
(Via: Wikimedia Commons)

Maybe you’ve heard of “coral bleaching” as one of the symptoms of pollution around reefs. Bleaching happens when additional stresses (like pollution) get to be a bit too much for the polyps to handle. They can’t change the water purity, so instead, they offload the stressor they can control- the algae. Getting rid of the photosynthetic cells also gets rid of much of the characteristic colour of the reef, hence the term ‘bleaching’. In the short term, this is a smart move. It increases the polyp’s chance of survival during brief crises, and new algae can always be taken on when the host is ready. The real problems start when the environmental stress persists, and the polyp never takes on new algae. Eventually, it can’t sustain itself and dies, as those in a tenth of the world’s reefs already have. At least there’s still hope for these areas; if conditions improve, new colonies can be formed using the old reef as a foundation. The Great Barrier Reef, for example, is considered to be between 6000 and 8000 years old. However, the modern structure has developed atop an older, dead reef system, thought to be over half a million years old. Time enough for us to clean up our act, maybe.

[Fun Fact: Coral polyps only reproduce sexually to start new colonies. Within a single piece of coral, all the polyps are genetically identical clones, produced by polyps dividing in half and then re-growing their lost tissues.]

Says Who?

  • CoRIS- Coral Reef Information System
  • Fransolet et al. (2012) Journal of Experimental Marine Biology and Ecology 420-421:1-7
  • Piper (2007) Extraordinary Animals. Greenwood Press: Westport, Connecticut.
  • Wooldridge (2010) BioEssays 32(7):615-625

    The little-known “Lady Gaga Coral”
    (Via: Wikimedia Commons)

EVOLUTION TAG TEAM, Part 2: Sex & the Synconium

The second in an ongoing series of biology’s greatest duos. (Check out Parts One and Three)

(Via: Mastering Horticulture)

Common Name (Plants): Fig Trees

  • A.K.A.: Genus Ficus

Common Name (Wasps): Fig Wasps

  • A.K.A.: Family Agaonidae

Vital Stats:

  • Approximately 800 species of figs
  • Most are trees, but some are shrubs and vines
  • Approximately 640 species (20 genera) of fig wasps
  • All are obligate pollinators of figs

Found: Throughout the Tropics

It Does What?!

Snacked on any Fig Newtons lately? Tasty, right? Like the ad says, “A cookie is just a cookie, but a Newton is fruit and cake.”  …And wasps.

They must have run out of space on the package for that last part.

Before you toss out your favourite teatime treat, I should point out that without those wasps, the figs themselves wouldn’t exist. [Personally, I love Fig Newtons and will eat them regardless of any insects present.] This plant-insect pairing actually represents one of the most stable symbioses out there, with evidence suggesting it has existed for over 65 million years.

Now with 10% more Wings
(Via: Wikipedia)

While it’s not entirely clear how this arrangement evolved in the first place, fig trees produce a unique structure called a synconium, in which the flowers are actually inside the part we think of as the fruit. This synconium, which can contain up to 7000 flowers, depending on the fig species, has a tiny hole at the tip called an ostiole. In order for the flowers to be pollinated and the fruit to grow, a female wasp must squeeze through that hole, often losing her wings and antennae in the process, and distribute pollen that she carries in a sac on her abdomen. As she does so, she also uses her ovipositor to reach down into some of the female flowers and lay her eggs in their ovaries, where a gall is formed and the larvae can develop. Then she dies and ends up in a cookie. The End.

But hold on, let’s remove humans from the equation for a moment. She dies, but her eggs hatch into little moth larvae which use the growing fig for nutrition. Once they’re old enough, the young wasps mate with one another inside the fig (another nice mental image for snacktime), and the females gather pollen from the male flowers and store it inside their abdominal pollen baskets (yes, that’s actually what they’re called). The wingless male wasps have a simple, three step life: 1) mate with females, 2) chew a hole through the fig so they can leave, 3) die. That’s pretty much it for them. They may escape the nursery with the females, but they’ll die shortly thereafter, regardless. In fact, even the females have a pretty rough deal; from the time they’re old enough to mate, they have about forty-eight hours to get their eggs fertilized, gather pollen, find a new synconium, distribute the pollen, and lay their eggs. Two days, and their life is over. No pursuit of happiness for the fig wasp, I’m afraid.

“What does it all mean?”
(Via: BugGuide.net)

As with any long-standing mutualism, there are, of course, parasites ready and waiting to take advantage of it. These parasites are wasps which are able to enter the synconium and lay their eggs, but which do not pollinate the fig. Although their eggs will crowd out those of the fig wasps, decreasing the number of fig wasp larvae born, they are kept in check by the fact that any unpollinated synconium will be aborted by the tree and drop to the ground, taking the parasite eggs with it. The nonpollinating wasps are therefore kept from being a serious threat to the tree’s pollinators.

So there you have it, another of evolution’s great matches. The wasps get an edible nursery, the trees get pollinated, and we get tasty fruits with suspicious crunchy bits that probably aren’t dead wasp bodies, so just try not to think about it too much…

Seeds, or wasp eggs? You be the judge!
(Via: This Site)

[Fun Fact: The symbiosis between fig species and their corresponding wasp partners is so specific (often 1:1), that the shape of the ostiole actually matches the shape of the head of the wasp species which will pollinate it.]

[For those who would like to read about figs and fig wasps in much greater detail (such as how this works when the male and female flowers are in different figs), check out this excellent site for all you could ever want to know.]

Says Who?

  • Compton et al. (2010) Biology Letters 6: 838-842
  • Cook et al. (2004) Journal of Evolutionary Biology 17: 238-246
  • Kjellberg et al. (2001)Proceedings of the Royal Society of London, Biology 268: 1113-1121
  • Proffit et al. (2009) Entomologia Experimentalis et Applicata 131: 46-57
  • Zhang et al. (2009) Naturwissenschaften 96: 543-549

EVOLUTION TAG TEAM, Part 1: Acacia Domatia

The first in an ongoing series of biology’s greatest duos. (Here’s Part 2 and Part 3)

Home, Sweet Home.
(via: Flickr)

Common Name (Plants): Bullhorn Acacias, Whistling Thorns

  • A.K.A.: Acacia cornigera, Acacia drepanolobium, and several other Acacia species

Common Name (Ants): Acacia Ants

  • A.K.A.: Pseudomyrmex and Crematogaster species

Found: Central America (Bullhorn Acacias) and East Africa (Whistling Thorns)

It Does What?!

Life as a tree is tough, particularly when you live in a part of the world that’s home to the biggest herbivores on Earth and happen to have delicate, delicious leaves. Such is the case for the African acacias. Without sufficient defences, they’d be gobbled up in no time by elephants, rhinos, and giraffes. The trees are known for having huge, sharp thorns, but even that’s sometimes not enough; the lips and tongues of giraffes are so tough and dexterous, they can often strip the leaves right out from between the thorns. So what’s a stressed acacia to do? Recruit a freaking army, that’s what.

Pseudomyrmex ferruginea: the giraffe’s worst enemy.
(Photo by April Nobile)

A few species of acacia in both Africa and Central America (where the herbivores are smaller, but no less voracious) have developed a symbiosis wherein they enjoy the services of ant colonies numbering up to 30,000 individuals, tirelessly patrolling their branches 24 hours a day. Should a hungry elephant or goat wander up and take a bite, nearby patrol ants will call in reinforcements and soon the interloper will be utterly overrun with angry, biting ants. What’s more, the protection extends beyond just animal threats. The ants will go so far as to kill other insects, remove fungal pathogens from the surface of the tree and even uproot nearby seedlings because, you know, they might eventually steal some sunlight from the beloved acacia.

“Trespassers Will Be Drawn and Quartered”
(via Wikimedia Commons)

So what do the troops get out of this? Quite a bit, actually. In ant-protected acacias (‘myrmecophytes’, they’re called), the thorns that normally grow at the base of a leaf swell up. In the Central American species, they grow into something that looks like a bull’s horn (hence their common name), while the African ones become more bulbous. These specialized structures, called domatia, are hollow inside and serve as very convenient housing for the ants. What’s more, the trees produce not one, but two different kinds of nourishment for the colony- regular, and baby food. The adult ants will feed from a sweet liquid exuded by nectaries on the branches. Meanwhile, on the tips of the tree’s leaflets, small white structures called Beltian bodies are formed which are high in the protein every growing child ant-larva needs. These are collected by workers and inserted right into the larval pouches, to be eaten before the ants are even fully formed.

The Bullhorn Acacia, now with more Beltian bodies!
(via Flickr)

Sounds like the perfect partnership, right? Usually, yes, but in nature, a symbiosis is only a symbiosis until one side figures out how to take advantage of the other. From the ants’ side, for example, any energy spent by the tree on reproduction is energy not spent on new homes and sweet, sweet nectar for them. Therefore, the ants will sometimes systematically nip all the flowers off the tree as it attempts to bloom. They’ll also prune the acacia’s outward growth if those new shoots may come into contact with a neighbouring tree, allowing invasion by another ant colony. Conversely, if herbivores become scarce and the acacia no longer requires such a strong protection force, it will begin to produce fewer domatia and less nectar in a move to starve some of the ants out. This has been shown to actually be a bad strategy for the acacia, since the soldiers, not to be outsmarted by a tree, turn to farming and begin raising sap-sucking insects on the bark, thereby getting their sugar fix anyway. And so it goes, oscillating between advantageous partnership and opportunistic parasitism… like so many things in life.

The roomier, more spacious African domatium.
(Image by Martin Sharman)

[Side note: While I’ve never personally encountered ant-acacias, I have disturbed an ant-protected tree of another family in the rainforests of Guyana, and can attest to the fact that the retaliation was both swift and intense. I was in a small boat at the edge of a river collecting botanical specimens, and I nearly jumped in the river to escape the onslaught. Don’t mess with ants.]

Says Who?

  • Clement et al. (2008) Behav. Ecol. Sociobiol. 62: 953-962.
  • Frederickson (2009) American Naturalist 173(5): 675-681.
  • Huntzinger et al. (2004) Ecology 85(3): 609-614.
  • Janzen (1966) Evolution 20(3): 249-275.
  • Nicklen & Wagner (2006) Oecologia 148: 81-87.
  • Stapley (1998) Oecologia 115: 401-405.