Forever Young

How Evolution Made Baby-faced Humans & Adorable Dogs

human_development_neoteny_body_and_head_proportions_pedomorphy_maturation_aging_growth

Who among us hasn’t looked at the big round eyes of a child or a puppy gazing up at us and wished that they’d always stay young and cute like that? You might be surprised to know that this wish has already been partially granted. Both you as an adult and your full-grown dog are examples of what’s referred to in developmental biology as paedomorphosis (“pee-doh-mor-fo-sis”), or the retention of juvenile traits into adulthood. Compared to closely related and ancestral species, both humans and dogs look a bit like overgrown children. There are a number of interesting reasons this can happen. Let’s start with dogs.

When dogs were domesticated, humans began to breed them with an eye to minimizing the aggression that naturally exists in wolves. Dogs that retained the puppy-like quality of being unaggressive and playful were preferentially bred. This caused certain other traits associated with juvenile wolves to appear, including shorter snouts, wider heads, bigger eyes, floppy ears, and tail wagging. (For anyone who’s interested in a technical explanation of how traits can be linked like this, here’s a primer on linkage disequilibrium from Discover. It’s a slightly tricky, but very interesting concept.) All of these are seen in young wolves, but disappear as the animal matures. Domesticated dogs, however, will retain these characteristics throughout their lives. What began as a mere by-product of wanting non-aggressive dogs has now been reinforced for its own sake, however. We love dogs that look cute and puppy-like, and are now breeding for that very trait, which can cause it to be carried to extremes, as in breeds such as the Cavalier King Charles spaniel, leading to breed-wide health problems.

cavalier-king-charles-spaniel-blenheim-dog-tag-id-image-nm
An undeniably cute Cavalier King Charles spaniel, bred for your enjoyment. (Via Wikimedia Commons)

Foxes, another type of wild dog, have been experimentally domesticated by scientists interested in the genetics of domestication. Here, too, as the foxes are bred over numerous generations to be friendlier and less aggressive, individuals with floppy ears and wagging tails – traits not usually seen in adult foxes – are beginning to appear.

But I mentioned this happening in humans, too, didn’t I? Well, similarly to how dogs resemble juvenile versions of their closest wild relative, humans bear a certain resemblance to juvenile chimpanzees. Like young apes, we possess flat faces with small jaws, sparse body hair, and relatively short arms. Scientists aren’t entirely sure what caused paedomorphosis in humans, but there are a couple of interesting theories. One is that, because our brains are best able to learn new skills prior to maturity (you can’t teach an old ape new tricks, I guess), delayed maturity, and the suite of traits that come with it, allowed greater learning and was therefore favoured by evolution. Another possibility has to do with the fact that juvenile traits – the same ones that make babies seem so cute and cuddly – have been shown to elicit more helping behaviour from others. So the more subtly “baby-like” a person looks, the more help and altruistic behaviour they’re likely to get from those around them. Since this kind of help can contribute to survival, it became selected for.

chimpanzee-mastiff-dog-friends-10
You and your dog, essentially. (Via The Chive)

Of course, dogs and humans aren’t the only animals to exhibit paedomorphosis. In nature, the phenomenon is usually linked to the availability of food or other resources. Interestingly, both abundance and scarcity can be the cause. Aphids, for example, are a small insect that sucks sap out of plants as a food source. Under competitive conditions in which food is scarce, the insects possess wings and are able to travel in search of new food sources. When food is abundant, however, travel is unnecessary and wingless young are produced which grow into adulthood still resembling juveniles. Paedomorphosis is here induced by abundant food. Conversely, in some salamanders, it is brought on by a lack of food. Northwestern salamanders are typically amphibious as juveniles and terrestrial as adults, having lost their gills. In high elevations where the climate is cooler and a meal is harder to come by, many of these salamanders remain amphibious, keeping their gills throughout their lives because aquatic environments represent a greater chance for survival. In one salamander species, the axolotl (which we’ve discussed on this blog before), metamorphosis has been lost completely, leaving them fully aquatic and looking more like weird leggy fish than true salamanders.

axolotl_ganz
An axolotl living the young life. (Via Wikimedia Commons)

So paedomorphosis, this strange phenomenon of retaining juvenile traits into adulthood, can be induced by a variety of factors, but it’s a nice demonstration of the plasticity of developmental programs in living creatures. Maturation isn’t always a simple trip from point A to point B in a set amount of time. There are many, many genes at play, and if nature can tweak some of them for a better outcome, evolution will ensure that the change sticks around.

Sources

*Header image by: Ephert – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=39752841

Redesigning Life

redesigning-life_cover

This post originally appeared on Science Borealis

“Imagine if living things were as easy to modify as a computer Word file.” So begins John Parrington’s journey through the recent history and present-day pursuits of genetic modification in Redesigning Life. Beginning with its roots in conventional breeding and working right up to the cutting edge fields of optogenetics, gene editing, and synthetic biology, the book is accessible to those with some undergraduate-level genetics, or secondary school biology and a keen interest in the subject. This audience will be well served by a book whose stated goal is to educate the public so that a proper debate can take place over the acceptable uses of genome editing.

 

Parrington doesn’t shy away from the various ethical concerns inherent in this field. While he points out, for example, that many fears surrounding transgenic foods are the result of sensational media coverage, he also discusses the very real concerns relating to issues such as multinational companies asserting intellectual property rights over living organisms, and the potential problems of antibiotic resistance genes used in genetically modified organisms (GMOs). Conversely, he discusses the lives that have been improved with inventions such as vitamin A-enriched “golden rice”, which has saved many children from blindness and death due to vitamin deficiencies, and dairy cattle that have been engineered to lack horns, so they can be spared the excruciating process of having their horn buds burned off with a hot iron as calves. These are compelling examples of genetic modification doing good in the world.

 

This is Parrington’s approach throughout the book: both the positive and negative potential consequences of emerging technologies are discussed. Particular attention is paid to the pain and suffering of the many genetically modified animals used as test subjects and models for disease. This cost is weighed against the fact that life-saving research could not go ahead without these sacrifices. No conclusions are drawn, and Parrington’s sprawling final chapter, devoted solely to ethics, is meandering and unfocussed, perhaps reflecting the myriad quagmires to be negotiated.

 

Weaving in entertaining and surprising stories of the scientists involved, Parrington frequently brings the story back to a human level and avoids getting too bogged down in technical details. We learn that Gregor Mendel, of pea-breeding fame, originally worked with mice, until a bishop chastised him for not only encouraging rodent sex but watching it. Mendel later commented that it was lucky that the bishop “did not understand that plants also had sex!” We’re told that Antonie van Leeuwenhoek, known as the father of microscopy, was fond of using himself as a test subject. At one point, he tied a piece of stocking containing one male and two female lice to his leg and left it for 25 days to measure their reproductive capacity. Somewhat horrifyingly, he determined that two breeding females could produce 10,000 young in the space of eight weeks.

 

The applications of the fast moving, emerging technologies covered in Redesigning Life will astound even those with some familiarity with modern genetics. The new field of optogenetics, for example, uses light-sensitive proteins such as opsins to trigger changes in genetically modified neurons in the brain when light is shone upon them. In a useful, yet nevertheless disturbing proof-of-concept experiment, scientists created mind-controlled mice, which, at the flick of a switch, can be made to “run in circles, like a remote-controlled toy.” More recently, sound waves and magnetic fields have been used to trigger these reactions less invasively. This technique shows potential for the treatment of depression and epilepsy.

 

The book goes into some detail about CRISPR/CAS9 gene editing, a process that has the potential to transform genetic modification practices. This system is efficient, precise, broadly applicable to a range of cell types and organisms, and shortens the research timeline considerably compared to traditional methods of creating GMOs. It underpins most of the other technologies discussed in the book, and its applications seem to be expanding daily. In the words of one of its developers, Jennifer Doudna, “Most of the public does not appreciate what is coming.” These words could be applied to almost any technology discussed in this book. Already within reach are so-called “gene drive” technologies, which could render populations of malaria-bearing mosquitos – or any other troublesome species – sterile, potentially driving them to extinction, albeit with unknown ancillary consequences. Researchers have also developed a synthetic genetic code known as XNA, which sports two new nucleotides and can code for up to 172 amino acids, as opposed to the usual 20. Modifying organisms to contain XNA opens up the possibility of creating proteins with entirely novel functions, as well as the tantalizing prospect of plants and animals that are entirely immune to all current viruses, due to the viruses’ inability to hijack a foreign genetic code for their own uses.

 

While the book touches on agriculture, its main preoccupation is medical research. Despite many of the therapies covered being far from ready for use in humans, one can’t help but feel that a revolution in the treatment of diseases, both infectious and genetic, is at hand. Only a year ago, gene editing was used to cure a baby girl of leukemia by engineering her immune system to recognize and attack her own cancerous cells. In the lab, the health of mice with single gene disorders such as Huntington’s disease and Duchenne muscular dystrophy is being significantly improved. Writing in 1962 in his book The Genetic Code, Isaac Asimov speculated that someday “the precise points of deficiency in various inherited diseases and in the disorders of the cell’s chemical machinery may be spotted along the chromosome.” Some 54 years later, we have the technology not only to spot these points but to fix them as precisely as a typo in a manuscript.