Living in Filth and Looking Up at the Stars

(Via:)
(Via: Wikimedia Commons)

Common Name: Dung Beetles

A.K.A.: Subfamily Scarabaeinae

Vital Stats:

  • Many subsist entirely on faeces, while others also consume fungi and decaying plant matter
  • Found in extremely diverse habitats, on all inhabited continents
  • Grow up to 6cm (2.4”) long, and can live for up to three years

Found: Across the temperate and tropical regions of the world

Dung Beetle Map

It Does What?!

Dung beetles… if you believe in reincarnation, these are why you try to stay on the straight and narrow. Otherwise, you might end up coming back as a creature whose life quite literally revolves around excrement. Dung beetles owe their entire existence to the fact that larger animals have inefficient digestive systems, consuming manure for its remaining nutrients and even laying their eggs inside it as food for their future young. Gross, yes, but once you get past the “ick” factor, it’s a pretty practical system.

Dung beetles come in three main varieties: rollers, tunnellers, and dwellers. Rollers, which are the type most people are familiar with, roll faeces into small balls which they roll away with them to consume and bury elsewhere. Tunnellers dig under the dung, burying it on site as an underground food source. Dwellers, the slackers of the dung beetle world, don’t bother with burying their treasure, preferring to simply live in it where it falls. I’ll focus on the rollers from here on in, as they’re the most bizarrely specialised of the bunch.

Dung beetles find their warm, fresh meals either through their excellent sense of smell or, in the case of some species, by simply riding around on their chosen food provider until the right time comes. Studies have shown that the beetles prefer omnivore or herbivore droppings to those of carnivores, perhaps for the more easily-digestible plant matter. One particularly intrepid group of researchers even determined that human faeces are favoured above those of most other large mammals. Good job, guys. Your funding agency must be proud.

It's a hot commodity... so to speak.(Via: Wikimedia Commons)
It’s a hot commodity… so to speak.
(Via: Wikimedia Commons)

Rollers immediately set to work on a new pile of droppings by shaping a dense little ball of up to ten times their weight (about TimBit sized, for you Canadians out there. Mmm!). Before rolling the ball away to be eaten/buried for later, the beetle will climb up on it and do a sort of dance, rotating around its top. Researchers also observed the beetles doing this dance if their rolling path was disturbed, or if another beetle stopped them to try to steal their ball.

So why the dance? As you might guess, it’s a means of getting their bearings, but what’s really fascinating is how they’re doing it. Dung beetles always roll their balls in a straight line directly away from its origin, probably as a means of reducing competition from other nearby beetles as quickly as possible. And they do this despite facing the ground as they roll the ball with their hind legs. During the day, this was fairly obviously accomplished by positioning themselves according to the direction of the sun, using their dorsal vision. However, they can also do it on a clear, moonless night. How?

Using a planetarium and a series of experiments which, hilariously, involved fitting the dung beetles with little cardboard hats to block their overhead vision, a South African researcher has determined that the beetles are actually using the light from the Milky Way to navigate. This is the only known instance of animals using an entire galaxy to orient themselves. Birds and seals have been known to use stars for positioning, but never the Milky Way itself. This from a tiny creature that cleans up piles of poop for a living… there’s probably an inspiring metaphor here somewhere.

Goes great with coffee!(Via: Wikimedia Commons)
Goes great with coffee!
(Via: Wikimedia Commons)

In the “But what does it do for me?” department, dung beetles are actually immensely useful to humans. Beyond restoring important soil nutrients, in areas of intense cattle-grazing, the beetles cart off and bury literally tonnes of manure that would otherwise host dangerous parasites and disease-carrying flies. Australia has intentionally introduced African dung beetles for this express purpose. Results have been much better than certain other introductions there.

The value of dung beetles has apparently been recognised for a very long time. Ever heard of the sacred scarab beetles of ancient Egypt? Yep… they’re dung beetles. One and the same. The beetles represented transformation and were linked with the god of the rising sun, who was believed to remake the sun and roll it across the sky each day, like the beetle with its ball. Something to think about next time you’re watching a beautiful sunrise.

[Fun Fact: Dung beetles in the African savanna use their dung balls as thermal refuges, periodically climbing up on them to moisten and cool their feet, which can increase in temperature by as much as ten degrees as they travel over the hot ground.]

Says Who?

  • Baird et al. (2012) PLoS ONE 7(1): e30211
  • Chamorro-Florescano (2011) Evolutionary Ecology 25: 277-289
  • Dacke et al. (2013) Current Biology 23: in press
  • Smolka et al. (2012) Current Biology 22(20): R863-R864
  • Whipple & Hoback (2012) Environmental Entomology 41(2): 238-244

Nights of the Living Dead… Further Horrors of the Insect World

(By: Paul Nylander Via: The Tucson Citizen)

Common Name: The Tarantula Hawk

A.K.A.: Genera Pepsis and Hemipepsis

Vital Stats:

  • The two genera make up Tribe Pepsini in Family Pompilidae
  • Grow up to 5cm (2”) long
  • Stingers are up to 7mm (1/3”) long
  • Quite long lived for wasps, with lifespans of more than a year
  • Adults feed primarily on milkweed nectar

Found: Across much of the tropics and southern hemisphere

It Does What?!

Happy Halloween, readers! Today’s the day when we’re surrounded by images of zombies, witches, ghosts, and spiders- all creatures meant to scare us on some level. Of course, only one of these things is real. And spiders truly are a scary thing for many people. For all you arachnophobes out there who are feeling vaguely uncomfortable about the preponderance of fake spiders out there today, did you ever wonder what the spiders fear? What keeps tarantulas, the biggest, scariest arachnids of them all, awake at night? Tarantula hawks, that’s what. If spiders had Halloween, this is what they would dress up as.

A creature that can kill small rodents being outmatched by a nectar-sipping insect. Sad.
(Via: Wikimedia Commons)

Like any good mother, the female tarantula hawk wants to ensure that her baby has all the food it requires to grow up into a healthy adult wasp. Rather than bag a large piece of prey and have it spoil by the time her egg hatches, she has developed an ingenious system of keeping meat fresh.

Spying a tarantula from the air, she will attack, injecting the spider with her venom as it struggles to bite her. A particularly hard and slippery exoskeleton renders this counterattack ineffective; the fangs simply slip off her. Before long, the tarantula has succumbed to her venom and is alive, but completely paralysed. Once the prey has been neutralised, she sets out over land, dragging the spider up to 100m (quite a long way, considering the scale involved) back to the site of a burrow she has dug out. Here, our mom-to-be lays a single egg on the helpless spider’s abdomen, then proceeds to immure it in the burrow.

A hundred metres starts to look like a very long trip.
(By: Erin Zimmerman, taken during my field work in Guyana)

But this is only the beginning of the horror for the paralysed spider. Soon after, the egg hatches, and the hungry larva tunnels directly into the spider’s flesh, eating as it goes. The larva instinctively knows to avoid the tarantula’s vital organs as it eats, thereby keeping the prey alive for as long as possible. After several weeks of chowing down, the larva finishes off the job and emerges from the spider’s body, having now matured into a wasp. It then simply unseals the burrow and flies away, leaving the late tarantula in its ready-made grave.

Wondering what happens when a person gets stung by one of these? It’s an interesting question, because the answer is both “a lot” and “not much”. You see, the paralytic agent in the venom only works on invertebrates, and won’t actually do any real damage to human tissue. Before you go trying to catch one, though, know that, in terms of immediate reaction, tarantula hawks are considered to have the single most painful insect sting in the world. It’s best described by an entomologist who has actually experienced such a sting:

“Advice I have given in speaking engagements was to ‘lay down and scream’. The reasoning being that the pain is so debilitating and excruciating that the victim is at risk of further injury by tripping in a hole or over an object in the path and falling onto a cactus or into a barbed wire fence. Such is the pain, that few, if any, can maintain normal coordination or cognitive control to prevent accidental injury. Screaming is a satisfying expression that helps reduce attention to the pain of the sting itself.” [Schmidt 2004]

In short… don’t touch these.

A few words now on just how frighteningly well-adapted this wasp is. Not only is it covered in armour and full of incredibly painful venom, but at roughly the size of your little finger, it’s one of the largest wasps out there, and more of a fight than most insectivores want to deal with. It is essentially without predators. And lest any potential enemies forget why they’re not touching it, the tarantula hawk has both a distinct colour and a characteristic odour, meant to remind aggressors of the pain associated with any previous run-ins. Researchers have described tarantula hawks as being “among the best defended animals on earth” [Schmidt 2004]. And because success always spawns imitation, there are now several other creatures mimicking the appearance of the female tarantula hawk as a form of protection, including the more-or-less defenceless males of the same species.

So the next time you shudder at the thought of a tarantula stalking you in the wild, stop and remember what might be stalking it.

[Fun Fact: Despite its phenomenal pain-inducing qualities, tarantula hawk venom is only about 5% as lethal as honeybee venom, based on studies by people who inject white mice with horrible things for a living.]

Says Who?

  • Alcock & Kemp (2006) Ethology 112: 691-698
  • Kurczewski (2010) Northeastern Naturalist 17(1): 115-124
  • Schmidt (2004) Journal of the Kansas Entomological Society 77(4): 402-413
  • Schoeters et al. (1997) Canadian Journal of Zoology 75: 1014-1019

The Zombie Apocalypse: Already Underway

(Via: this site)

Common Name: The Zombie-Ant Fungus

A.K.A.: Ophiocordyceps unilateralis

Vital Stats:

  • Whole “graveyards” of 20-30 ants may be found within a single square metre
  • Telltale bitemarks on fossil plants suggest this fungus, or a related species, may have been in operation for the last 48 million years
  • Host species is the carpenter ant Camponotus leonardi

Found: Tropical forests throughout the world

It Does What?!

Despite all the advances of modern neuroscience, the fact is, human understanding of brain chemistry and its manipulation still has a long way to go. Much to the chagrin of those plotting world domination, we won’t be chemically controlling each other’s minds any time soon. How embarrassing then, that a mere fungus seems to have perfected this technique. Almost fifty million years ago. Scooped again, humanity.

It begins with an ant walking along the ground, deep in a tropical forest somewhere. This ant, Camponotus leonardi, lives high in the trees, but must occasionally come down to cross from one tree to another when there is a break in the canopy. As it walks, a minute fungal spore drifts down from above and lands in its back, unnoticed. The unseen spore springs into action, producing an enzyme which breaks down the ant’s exoskeleton just enough to allow a fungal hypha, like a tiny root, to enter. The host’s fate is now sealed.

This is your brain on ‘shrooms.
(Via: Flickr, by Alextkt)

While the ant climbs back up into the canopy and goes about its business, the fungus grows through its insides, breaking down and consuming the non-vital soft tissues as it goes, keeping the animal alive even as it is being eaten. Soon, the fungal tendrils reach the brain and begin to produce chemicals which affect the host’s behaviour in very specific ways. First, it will experience convulsions that cause it to fall out of its tree. These will continue periodically, preventing it from returning to its colony. Over a period of hours, the ant will then wander, erratically and aimlessly, over the ground and low-growing plants.

This is where the precision of the fungus’ mind control becomes truly impressive. At solar noon, when the sun is highest in the sky, the infected ant will abruptly climb the stem of a small plant and find a leaf pointing north by northwest at a height of 20-30cm above the ground. Yes, really. No one knows how this jaw-dropping specificity is accomplished, but it’s what the fungus wants, providing a temperature of 20-30 degrees Celcius (68-86F) and a relative humidity of around 95%. In cases where ants were experimentally moved to different heights or orientations, the fungus was unable to reproduce properly.

What the fungus wants, the fungus gets.
(Via: Wikimedia Commons)

Having found the perfect leaf, the zombified ant will go to its underside, find a major leaf vein, and just bite down on it as hard as it can. The fungus has already destroyed the muscles required to release this grip, and so there the ant stays, slowly dying over the course of the afternoon. Once its victim has been dispatched, the fungus grows toward the leaf, further anchoring itself to the plant. Around a week later, the parasite completes its horrifying circle of life by growing a fruiting body, similar to a mushroom, from the back of the dead ant’s head. This will open to release thousands of tiny spores, raining down over any potential hosts which may be walking below.

While the fungus is able to infect other, closely related, species of carpenter ant, it has less precise control over these hosts and isn’t always successful in getting the ant to do its bidding, suggesting that even minor variations in brain structure can stump it. So we’re probably safe from the fungal zombie apocalypse. At least for the time being…

Says Who?

  • Andersen et al. (2009) American Naturalist 174(3): 424-433
  • Hughes et al. (2011) Biology Letters 7: 67-70
  • Hughes et al. (2011) BMC Ecology 11: 13
  • Pontoppidan et al. (2009) PloS ONE 4(3): e4835

EVOLUTION TAG TEAM, Part 2: Sex & the Synconium

The second in an ongoing series of biology’s greatest duos. (Check out Parts One and Three)

(Via: Mastering Horticulture)

Common Name (Plants): Fig Trees

  • A.K.A.: Genus Ficus

Common Name (Wasps): Fig Wasps

  • A.K.A.: Family Agaonidae

Vital Stats:

  • Approximately 800 species of figs
  • Most are trees, but some are shrubs and vines
  • Approximately 640 species (20 genera) of fig wasps
  • All are obligate pollinators of figs

Found: Throughout the Tropics

It Does What?!

Snacked on any Fig Newtons lately? Tasty, right? Like the ad says, “A cookie is just a cookie, but a Newton is fruit and cake.”  …And wasps.

They must have run out of space on the package for that last part.

Before you toss out your favourite teatime treat, I should point out that without those wasps, the figs themselves wouldn’t exist. [Personally, I love Fig Newtons and will eat them regardless of any insects present.] This plant-insect pairing actually represents one of the most stable symbioses out there, with evidence suggesting it has existed for over 65 million years.

Now with 10% more Wings
(Via: Wikipedia)

While it’s not entirely clear how this arrangement evolved in the first place, fig trees produce a unique structure called a synconium, in which the flowers are actually inside the part we think of as the fruit. This synconium, which can contain up to 7000 flowers, depending on the fig species, has a tiny hole at the tip called an ostiole. In order for the flowers to be pollinated and the fruit to grow, a female wasp must squeeze through that hole, often losing her wings and antennae in the process, and distribute pollen that she carries in a sac on her abdomen. As she does so, she also uses her ovipositor to reach down into some of the female flowers and lay her eggs in their ovaries, where a gall is formed and the larvae can develop. Then she dies and ends up in a cookie. The End.

But hold on, let’s remove humans from the equation for a moment. She dies, but her eggs hatch into little moth larvae which use the growing fig for nutrition. Once they’re old enough, the young wasps mate with one another inside the fig (another nice mental image for snacktime), and the females gather pollen from the male flowers and store it inside their abdominal pollen baskets (yes, that’s actually what they’re called). The wingless male wasps have a simple, three step life: 1) mate with females, 2) chew a hole through the fig so they can leave, 3) die. That’s pretty much it for them. They may escape the nursery with the females, but they’ll die shortly thereafter, regardless. In fact, even the females have a pretty rough deal; from the time they’re old enough to mate, they have about forty-eight hours to get their eggs fertilized, gather pollen, find a new synconium, distribute the pollen, and lay their eggs. Two days, and their life is over. No pursuit of happiness for the fig wasp, I’m afraid.

“What does it all mean?”
(Via: BugGuide.net)

As with any long-standing mutualism, there are, of course, parasites ready and waiting to take advantage of it. These parasites are wasps which are able to enter the synconium and lay their eggs, but which do not pollinate the fig. Although their eggs will crowd out those of the fig wasps, decreasing the number of fig wasp larvae born, they are kept in check by the fact that any unpollinated synconium will be aborted by the tree and drop to the ground, taking the parasite eggs with it. The nonpollinating wasps are therefore kept from being a serious threat to the tree’s pollinators.

So there you have it, another of evolution’s great matches. The wasps get an edible nursery, the trees get pollinated, and we get tasty fruits with suspicious crunchy bits that probably aren’t dead wasp bodies, so just try not to think about it too much…

Seeds, or wasp eggs? You be the judge!
(Via: This Site)

[Fun Fact: The symbiosis between fig species and their corresponding wasp partners is so specific (often 1:1), that the shape of the ostiole actually matches the shape of the head of the wasp species which will pollinate it.]

[For those who would like to read about figs and fig wasps in much greater detail (such as how this works when the male and female flowers are in different figs), check out this excellent site for all you could ever want to know.]

Says Who?

  • Compton et al. (2010) Biology Letters 6: 838-842
  • Cook et al. (2004) Journal of Evolutionary Biology 17: 238-246
  • Kjellberg et al. (2001)Proceedings of the Royal Society of London, Biology 268: 1113-1121
  • Proffit et al. (2009) Entomologia Experimentalis et Applicata 131: 46-57
  • Zhang et al. (2009) Naturwissenschaften 96: 543-549

Advertising in the Wild… Not So Very Different (Ophrys sp.)

(Via: lastdragon.org)

Common Name: Bee Orchids

A.K.A.: Genus Ophrys

Vital Stats:

  • 30-40 recognised species in the genus
  • Grows to a height of 15-50 cm (6-20”)
  • The name Ophrys comes from a word meaning “eyebrow” in Greek, for the fuzzy edges of the petals
  • First mentioned in ancient Roman literature by Pliny the Elder (23-79 A.D.)

Found: Throughout most of Europe and the British Isles

It Does What?!

We tend to think of animals (including humans) as using plants to serve our ends exclusively- we eat them, clothe ourselves with them, build homes with them, and so on. But for all the obvious ways in which the animal kingdom takes advantage of the plants, there are numerous, more subtle, ways that they use us to do their bidding. One of those ways is as pollinators; plants enlist animals to help them reproduce. And while that enlistment often takes a rather mundane form – a bit of pollen brushed onto a bird’s head as it sips nectar, say – sometimes a group of plants will get a bit more creative about it. Such is the case with the bee orchids.

These highly specialised flowers depend on very specific relationships with their pollinators; often only a single species of bee (or wasp, in some cases) will pollinate a given species of orchid. Without those pollinators, the orchids can’t produce seed and would die out. So how do you control a free-roving creature that has other places to be? Why, sex, obviously. (Isn’t that the basis of most advertising?) The bee orchid has evolved a flower that not only looks, but smells like a virgin female of the bee species which pollinates it.

May not be appropriate for younger readers.
(Via: This Site)

At a distance, the bee detects the pheromones of a receptive female. Once he moves in closer, there she is, sitting on a flower, minding her own business. So he flies in and attempts to do his man-bee thing, only to find that he’s just tried to mate with a plant. Mortified (I imagine), he takes off, but with a small packet of pollen stuck to his head. He’s memorised the scent of this flower now and won’t return to it, but amazingly, the orchids vary their scent just slightly from one flower to the next, even on the same plant, so that the duped bee can never learn to distinguish an orchid from a female. What’s more, because the scent is more different between plants than between flowers on the same plant, he is more likely to proceed to a different plant, decreasing the chances that an orchid will self-fertilise.

Hilariously, researchers have shown that, due to their higher levels of scent variation compared to true female bees (variety being the spice of life, right guys?), male bees actually prefer the artificial pheromones of the orchids over real, live females. In experiments where males were given a choice between mating with an orchid and mating with a bee, they usually chose the flower, even if they had already experienced the real thing.

So there you have it. Plants: master manipulators of us poor, stupid animals.

Who could resist?
(Via: Wikia)

Says Who?

  • Ayasse et al. (2000) Evolution 54(6): 1995-2006
  • Ayasse et al. (2003) Proceedings of the Royal Society, London B. 270: 517-522
  • Streinzer et al. (2009) Journal of Experimental Biology 212: 1365-1370
  • Vereecken & Schiestl (2008) Proceedings of the National Academy of Science 105(21): 7484-7488
  • Vereecken et al. (2010) Botanical Review 76: 220-240

EVOLUTION TAG TEAM, Part 1: Acacia Domatia

The first in an ongoing series of biology’s greatest duos. (Here’s Part 2 and Part 3)

Home, Sweet Home.
(via: Flickr)

Common Name (Plants): Bullhorn Acacias, Whistling Thorns

  • A.K.A.: Acacia cornigera, Acacia drepanolobium, and several other Acacia species

Common Name (Ants): Acacia Ants

  • A.K.A.: Pseudomyrmex and Crematogaster species

Found: Central America (Bullhorn Acacias) and East Africa (Whistling Thorns)

It Does What?!

Life as a tree is tough, particularly when you live in a part of the world that’s home to the biggest herbivores on Earth and happen to have delicate, delicious leaves. Such is the case for the African acacias. Without sufficient defences, they’d be gobbled up in no time by elephants, rhinos, and giraffes. The trees are known for having huge, sharp thorns, but even that’s sometimes not enough; the lips and tongues of giraffes are so tough and dexterous, they can often strip the leaves right out from between the thorns. So what’s a stressed acacia to do? Recruit a freaking army, that’s what.

Pseudomyrmex ferruginea: the giraffe’s worst enemy.
(Photo by April Nobile)

A few species of acacia in both Africa and Central America (where the herbivores are smaller, but no less voracious) have developed a symbiosis wherein they enjoy the services of ant colonies numbering up to 30,000 individuals, tirelessly patrolling their branches 24 hours a day. Should a hungry elephant or goat wander up and take a bite, nearby patrol ants will call in reinforcements and soon the interloper will be utterly overrun with angry, biting ants. What’s more, the protection extends beyond just animal threats. The ants will go so far as to kill other insects, remove fungal pathogens from the surface of the tree and even uproot nearby seedlings because, you know, they might eventually steal some sunlight from the beloved acacia.

“Trespassers Will Be Drawn and Quartered”
(via Wikimedia Commons)

So what do the troops get out of this? Quite a bit, actually. In ant-protected acacias (‘myrmecophytes’, they’re called), the thorns that normally grow at the base of a leaf swell up. In the Central American species, they grow into something that looks like a bull’s horn (hence their common name), while the African ones become more bulbous. These specialized structures, called domatia, are hollow inside and serve as very convenient housing for the ants. What’s more, the trees produce not one, but two different kinds of nourishment for the colony- regular, and baby food. The adult ants will feed from a sweet liquid exuded by nectaries on the branches. Meanwhile, on the tips of the tree’s leaflets, small white structures called Beltian bodies are formed which are high in the protein every growing child ant-larva needs. These are collected by workers and inserted right into the larval pouches, to be eaten before the ants are even fully formed.

The Bullhorn Acacia, now with more Beltian bodies!
(via Flickr)

Sounds like the perfect partnership, right? Usually, yes, but in nature, a symbiosis is only a symbiosis until one side figures out how to take advantage of the other. From the ants’ side, for example, any energy spent by the tree on reproduction is energy not spent on new homes and sweet, sweet nectar for them. Therefore, the ants will sometimes systematically nip all the flowers off the tree as it attempts to bloom. They’ll also prune the acacia’s outward growth if those new shoots may come into contact with a neighbouring tree, allowing invasion by another ant colony. Conversely, if herbivores become scarce and the acacia no longer requires such a strong protection force, it will begin to produce fewer domatia and less nectar in a move to starve some of the ants out. This has been shown to actually be a bad strategy for the acacia, since the soldiers, not to be outsmarted by a tree, turn to farming and begin raising sap-sucking insects on the bark, thereby getting their sugar fix anyway. And so it goes, oscillating between advantageous partnership and opportunistic parasitism… like so many things in life.

The roomier, more spacious African domatium.
(Image by Martin Sharman)

[Side note: While I’ve never personally encountered ant-acacias, I have disturbed an ant-protected tree of another family in the rainforests of Guyana, and can attest to the fact that the retaliation was both swift and intense. I was in a small boat at the edge of a river collecting botanical specimens, and I nearly jumped in the river to escape the onslaught. Don’t mess with ants.]

Says Who?

  • Clement et al. (2008) Behav. Ecol. Sociobiol. 62: 953-962.
  • Frederickson (2009) American Naturalist 173(5): 675-681.
  • Huntzinger et al. (2004) Ecology 85(3): 609-614.
  • Janzen (1966) Evolution 20(3): 249-275.
  • Nicklen & Wagner (2006) Oecologia 148: 81-87.
  • Stapley (1998) Oecologia 115: 401-405.